These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11993951)

  • 1. Accumulation and potential dissolution of Chernobyl-derived radionuclides in river bottom sediment.
    Sanada Y; Matsunaga T; Yanase N; Nagao S; Amano H; Takada H; Tkachenko Y
    Appl Radiat Isot; 2002 May; 56(5):751-60. PubMed ID: 11993951
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Marčiulionienė D; Lukšienė B; Montvydienė D; Jefanova O; Mažeika J; Taraškevičius R; Stakėnienė R; Petrošius R; Maceika E; Tarasiuk N; Žukauskaitė Z; Kazakevičiūtė L; Volkova M
    J Environ Radioact; 2017 Nov; 178-179():253-264. PubMed ID: 28917181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental behaviour of radioactive particles from chernobyl.
    Kashparov V; Salbu B; Levchuk S; Protsak V; Maloshtan I; Simonucci C; Courbet C; Nguyen HL; Sanzharova N; Zabrotsky V
    J Environ Radioact; 2019 Nov; 208-209():106025. PubMed ID: 31419762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout.
    Kashparov VA; Lundin SM; Zvarych SI; Yoshchenko VI; Levchuk SE; Khomutinin YV; Maloshtan IM; Protsak VP
    Sci Total Environ; 2003 Dec; 317(1-3):105-19. PubMed ID: 14630415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the distribution and inventories of radionuclides in dated sediments around the Swedish coast.
    Olszewski G; Andersson P; Lindahl P; Eriksson M
    J Environ Radioact; 2018 Jun; 186():142-151. PubMed ID: 28987813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sources and distributions of 137Cs, 238Pu, 239,240Pu radionuclides in the north-western Barents Sea.
    Zaborska A; Mietelski JW; Carroll J; Papucci C; Pempkowiak J
    J Environ Radioact; 2010 Apr; 101(4):323-31. PubMed ID: 20172634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The distribution of the radionuclides in the main components of lake ecosystems within the Chernobyl NPP exclusion zone].
    Radiats Biol Radioecol; 2005; 45(3):271-80. PubMed ID: 16080615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behaviour of long-lived Chernobyl radionuclides in a soil-water system.
    Konoplev AV; Bulgakov AA; Popov VE; Bobovnikova TsI
    Analyst; 1992 Jun; 117(6):1041-7. PubMed ID: 1503231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments.
    Zaborska A; Winogradow A; Pempkowiak J
    J Environ Radioact; 2014 Jan; 127():11-25. PubMed ID: 24121306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sedimentary fluxes of 90Sr, 137Cs, 239,240Pu and 210Pb in the East Sea (Sea of Japan).
    Hong GH; Lee SH; Kim SH; Chung CS; Baskaran M
    Sci Total Environ; 1999 Sep; 237-238():225-40. PubMed ID: 10568278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 238Pu, 239,240Pu, 241Am, 90Sr and 137Cs in soils around nuclear research centre Rez, near Prague.
    Hölgye Z; Schlesingerová E; Tecl J; Filgas R
    J Environ Radioact; 2004; 71(2):115-25. PubMed ID: 14567947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the washoff of 90Sr and 137Cs from an experimental plot established in the vicinity of the Chernobyl reactor.
    Nair SK; Hoffman FO; Thiessen KM; Konoplev AV
    Health Phys; 1996 Dec; 71(6):896-909. PubMed ID: 8919073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effective source area of 90Sr for a stream near Chernobyl, Ukraine.
    Freed R; Smith L; Bugai D
    J Contam Hydrol; 2004 Jul; 71(1-4):1-26. PubMed ID: 15145559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a fuel particle dissolution model with samples from the Red Forest within the Chernobyl exclusion zone.
    Kashparov V; Salbu B; Simonucci C; Levchuk S; Reinoso-Maset E; Lind OC; Maloshtan I; Protsak V; Courbet C; Nguyen H
    J Environ Radioact; 2020 Nov; 223-224():106387. PubMed ID: 32868094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea.
    Garcia-Orellana J; Pates JM; Masqué P; Bruach JM; Sanchez-Cabeza JA
    Sci Total Environ; 2009 Jan; 407(2):887-98. PubMed ID: 18986686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthropogenic radionuclide fluxes and distribution in bottom sediments of the cooling basin of the Ignalina Nuclear Power Plant.
    Marčiulionienė D; Mažeika J; Lukšienė B; Jefanova O; Mikalauskienė R; Paškauskas R
    J Environ Radioact; 2015 Jul; 145():48-57. PubMed ID: 25863720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cesium-137 in the Goiânia waterways during and after the radiological accident.
    Godoy JM; Guimarães JR; Pereira JC; do Rio MA
    Health Phys; 1991 Jan; 60(1):99-103. PubMed ID: 1983992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term variation (1986-1998) of post-Chernobyl 90Sr, 137Cs, 238Pu and (239,240)Pu concentrations in air, depositions to ground, resuspension factors and resuspension rates in south Germany.
    Rosner G; Winkler R
    Sci Total Environ; 2001 Jun; 273(1-3):11-25. PubMed ID: 11419595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options.
    Bulgakov A; Konoplev A; Smith J; Laptev G; Voitsekhovich O
    J Environ Radioact; 2009 Apr; 100(4):329-32. PubMed ID: 19185396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chernobyl radionuclides in a Black Sea sediment trap.
    Buesseler KO; Livingston HD; Honjo S; Hay BJ; Manganini SJ; Degens E; Ittekkot V; Izdar E; Konuk T
    Nature; 1987 Oct 29-Nov 4; 329(6142):825-8. PubMed ID: 3670387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.