BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 11995966)

  • 1. Anaerobic growth of Saccharomyces cerevisiae alleviates the lethal effect of phosphotyrosyl phosphatase activators depletion.
    Rempola B; Kaniak A; di Rago JP; Rytka J
    Acta Biochim Pol; 2001; 48(4):1043-9. PubMed ID: 11995966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of RRD1 (YIL153w) and RRD2 (YPL152w), which encode two putative activators of the phosphotyrosyl phosphatase activity of PP2A in Saccharomyces cerevisiae.
    Rempola B; Kaniak A; Migdalski A; Rytka J; Slonimski PP; di Rago JP
    Mol Gen Genet; 2000 Jan; 262(6):1081-92. PubMed ID: 10660069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast phosphotyrosyl phosphatase activator is part of the Tap42-phosphatase complexes.
    Zheng Y; Jiang Y
    Mol Biol Cell; 2005 Apr; 16(4):2119-27. PubMed ID: 15689491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Saccharomyces cerevisiae phosphatase activator RRD1 is required to modulate gene expression in response to rapamycin exposure.
    Douville J; David J; Lemieux KM; Gaudreau L; Ramotar D
    Genetics; 2006 Feb; 172(2):1369-72. PubMed ID: 16322523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae Ogg1 prevents poly(GT) tract instability in the mitochondrial genome.
    Vongsamphanh R; Wagner JR; Ramotar D
    DNA Repair (Amst); 2006 Feb; 5(2):235-42. PubMed ID: 16293446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.
    Desfougères T; Ferreira T; Bergès T; Régnacq M
    Biochem J; 2008 Jan; 409(1):299-309. PubMed ID: 17803462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme synthesis in yeast does not require oxygen as an obligatory electron acceptor.
    Krawiec Z; Swieciło A; Biliński T
    Acta Biochim Pol; 2000; 47(4):1027-35. PubMed ID: 11996093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic characterization of POS5, the Saccharomyces cerevisiae mitochondrial NADH kinase.
    Shianna KV; Marchuk DA; Strand MK
    Mitochondrion; 2006 Apr; 6(2):94-101. PubMed ID: 16621727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS; Steensma HY
    FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae.
    Osterberg M; Kim H; Warringer J; Melén K; Blomberg A; von Heijne G
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11148-53. PubMed ID: 16847257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae.
    Ruan H; Yan Z; Sun H; Jiang L
    FEMS Yeast Res; 2007 Mar; 7(2):209-15. PubMed ID: 17002782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein phosphatase Siw14 controls intracellular localization of Gln3 in cooperation with Npr1 kinase in Saccharomyces cerevisiae.
    Hirasaki M; Kaneko Y; Harashima S
    Gene; 2008 Feb; 409(1-2):34-43. PubMed ID: 18166280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma membrane electron transport in Saccharomyces cerevisiae depends on the presence of mitochondrial respiratory subunits.
    Herst PM; Perrone GG; Dawes IW; Bircham PW; Berridge MV
    FEMS Yeast Res; 2008 Sep; 8(6):897-905. PubMed ID: 18657191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae.
    Ter Linde JJ; Steensma HY
    Yeast; 2002 Jul; 19(10):825-40. PubMed ID: 12112237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring genetic interactions and networks with yeast.
    Boone C; Bussey H; Andrews BJ
    Nat Rev Genet; 2007 Jun; 8(6):437-49. PubMed ID: 17510664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biosynthesis of heme in yeast Saccharomyces cerevisiae].
    Chełstowska A; Rytka J
    Postepy Biochem; 1993; 39(3):173-85. PubMed ID: 8234090
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of mating process by caffein and its effect on antibiotic marker segregation in yeast Saccharomyces cerevisiae.
    Bień M; Piatkowski J; Lachowicz TM
    Yeast; 1989 Apr; 5 Spec No():S267-71. PubMed ID: 2665360
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of temperature on nucleo-mitochondrial interactions in the yeast Saccharomyces cerevisiae.
    Marmiroli N; Restivo F; Zennaro E; Puglisi PP
    Biochem Biophys Res Commun; 1976 May; 70(2):589-94. PubMed ID: 779777
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.