These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 11996043)
41. Platelet adhesion onto segmented polyurethane surfaces modified by PEO- and sulfonated PEO-containing block copolymer additives. Lee JH; Ju YM; Lee WK; Park KD; Kim YH J Biomed Mater Res; 1998 May; 40(2):314-23. PubMed ID: 9549627 [TBL] [Abstract][Full Text] [Related]
42. Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes. Han DK; Jeong SY; Kim YH J Biomed Mater Res; 1989 Aug; 23(A2 Suppl):211-28. PubMed ID: 2674148 [TBL] [Abstract][Full Text] [Related]
43. Interaction of blood components with heparin-immobilized polyurethanes prepared by plasma glow discharge. Kang IK; Seo EJ; Huh MW; Kim KH J Biomater Sci Polym Ed; 2001; 12(10):1091-108. PubMed ID: 11853380 [TBL] [Abstract][Full Text] [Related]
44. Grafting of PEO to glass, nitinol, and pyrolytic carbon surfaces by gamma irradiation. McPherson TB; Shim HS; Park K J Biomed Mater Res; 1997; 38(4):289-302. PubMed ID: 9421750 [TBL] [Abstract][Full Text] [Related]
45. Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: effects of main chain and side chain lengths of grafts. Jin Z; Feng W; Beisser K; Zhu S; Sheardown H; Brash JL Colloids Surf B Biointerfaces; 2009 Apr; 70(1):53-9. PubMed ID: 19150594 [TBL] [Abstract][Full Text] [Related]
47. Poly(ethylene glycol) grafting to poly(ether imide) membranes: influence on protein adsorption and thrombocyte adhesion. Neffe AT; von Ruesten-Lange M; Braune S; Luetzow K; Roch T; Richau K; Jung F; Lendlein A Macromol Biosci; 2013 Dec; 13(12):1720-9. PubMed ID: 24167100 [TBL] [Abstract][Full Text] [Related]
48. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Poussard L; Burel F; Couvercelle JP; Merhi Y; Tabrizian M; Bunel C Biomaterials; 2004 Aug; 25(17):3473-83. PubMed ID: 15020121 [TBL] [Abstract][Full Text] [Related]
49. In vitro and in vivo studies of PEO-grafted blood-contacting cardiovascular prostheses. Park K; Shim HS; Dewanjee MK; Eigler NL J Biomater Sci Polym Ed; 2000; 11(11):1121-34. PubMed ID: 11263803 [TBL] [Abstract][Full Text] [Related]
50. In vitro and ex vivo platelet interactions with hydrophilic-hydrophobic poly(ethylene oxide)-polystyrene multiblock copolymers. Grainger DW; Nojiri C; Okano T; Kim SW J Biomed Mater Res; 1989 Sep; 23(9):979-1005. PubMed ID: 2777836 [TBL] [Abstract][Full Text] [Related]
51. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Amiji M; Park K Biomaterials; 1992; 13(10):682-92. PubMed ID: 1420713 [TBL] [Abstract][Full Text] [Related]
52. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data. Lee H; Kim DH; Witte KN; Ohn K; Choi J; Akgun B; Satija S; Won YY J Phys Chem B; 2012 Jun; 116(24):7367-78. PubMed ID: 22616550 [TBL] [Abstract][Full Text] [Related]
53. Bulk, surface, and blood-contacting properties of polyetherurethanes modified with polyethylene oxide. Okkema AZ; Grasel TG; Zdrahala RJ; Solomon DD; Cooper SL J Biomater Sci Polym Ed; 1989; 1(1):43-62. PubMed ID: 2488846 [TBL] [Abstract][Full Text] [Related]
54. Detection of nisin and fibrinogen adsorption on poly(ethylene oxide) coated polyurethane surfaces by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Schilke KF; McGuire J J Colloid Interface Sci; 2011 Jun; 358(1):14-24. PubMed ID: 21440897 [TBL] [Abstract][Full Text] [Related]
55. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: protein adsorption on PEO-copolymer/polyurethane blends. Tan J; McClung WG; Brash JL J Biomed Mater Res A; 2008 Jun; 85(4):873-80. PubMed ID: 17896776 [TBL] [Abstract][Full Text] [Related]
56. Polyurethane modified with an antithrombin-heparin complex via polyethylene oxide linker/spacers: influence of PEO molecular weight and PEO-ATH bond on catalytic and direct anticoagulant functions. Sask KN; Berry LR; Chan AK; Brash JL J Biomed Mater Res A; 2012 Oct; 100(10):2821-8. PubMed ID: 22641607 [TBL] [Abstract][Full Text] [Related]
57. Effect of the Molecular Weight of Poly(2-methoxyethyl acrylate) on Interfacial Structure and Blood Compatibility. Murakami D; Mawatari N; Sonoda T; Kashiwazaki A; Tanaka M Langmuir; 2019 Feb; 35(7):2808-2813. PubMed ID: 30673282 [TBL] [Abstract][Full Text] [Related]
58. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Sagnella S; Mai-Ngam K Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667 [TBL] [Abstract][Full Text] [Related]
59. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP. Jin Z; Feng W; Zhu S; Sheardown H; Brash JL J Biomed Mater Res A; 2010 Dec; 95(4):1223-32. PubMed ID: 20939048 [TBL] [Abstract][Full Text] [Related]
60. The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption. Murthy R; Shell CE; Grunlan MA Biomaterials; 2009 May; 30(13):2433-9. PubMed ID: 19232435 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]