These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11996050)

  • 1. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy.
    Puleo DA; Kissling RA; Sheu MS
    Biomaterials; 2002 May; 23(9):2079-87. PubMed ID: 11996050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1-step versus 2-step immobilization of alkaline phosphatase and bone morphogenetic protein-2 onto implant surfaces using polydopamine.
    Nijhuis AW; van den Beucken JJ; Boerman OC; Jansen JA; Leeuwenburgh SC
    Tissue Eng Part C Methods; 2013 Aug; 19(8):610-9. PubMed ID: 23231507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces.
    Adden N; Gamble LJ; Castner DG; Hoffmann A; Gross G; Menzel H
    Langmuir; 2006 Sep; 22(19):8197-204. PubMed ID: 16952262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.
    do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR
    PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Methods of BMP immobilization and evaluation for Ti-based dental implant surface modification].
    Ren XS; Wei SC; Su XD
    Beijing Da Xue Xue Bao Yi Xue Ban; 2010 Oct; 42(5):604-7. PubMed ID: 20957023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells.
    Huang HH
    Biochem Biophys Res Commun; 2004 Feb; 314(3):787-92. PubMed ID: 14741704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical surface modification of Ti-6Al-4V for the delivery of protein to the cell-biomaterial interface.
    Wojcik SM; Puleo DA
    Biomed Sci Instrum; 1997; 33():166-71. PubMed ID: 9731354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of trypsin immobilized on inorganic orthopedic biomaterials.
    Holt LJ; Puleo DA
    Artif Cells Blood Substit Immobil Biotechnol; 1996 Nov; 24(6):613-20. PubMed ID: 8922230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2.
    Seol YJ; Park YJ; Lee SC; Kim KH; Lee JY; Kim TI; Lee YM; Ku Y; Rhyu IC; Han SB; Chung CP
    J Biomed Mater Res A; 2006 Jun; 77(3):599-607. PubMed ID: 16506173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation.
    Tachibana A; Nishikawa Y; Nishino M; Kaneko S; Tanabe T; Yamauchi K
    J Biosci Bioeng; 2006 Nov; 102(5):425-9. PubMed ID: 17189169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observations on the effect of BMP-2 on rat bone marrow cells cultured on titanium substrates of different roughness.
    van den Dolder J; de Ruijter AJ; Spauwen PH; Jansen JA
    Biomaterials; 2003 May; 24(11):1853-60. PubMed ID: 12615475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys.
    V V AT; Bendavid A; Martin PJ; Vaithilingam V; Bean PA; Evans MDM; Subramanian B
    Colloids Surf B Biointerfaces; 2017 Jul; 155():1-10. PubMed ID: 28384526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface characterization of C/Ti-6Al-4V coating treated with ion beam.
    Demri B; Hage-Ali M; Moritz M; Muster D
    Biomaterials; 1997 Feb; 18(4):305-10. PubMed ID: 9068891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts.
    Zreiqat H; Valenzuela SM; Nissan BB; Roest R; Knabe C; Radlanski RJ; Renz H; Evans PJ
    Biomaterials; 2005 Dec; 26(36):7579-86. PubMed ID: 16002135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of titanium base alloys-biofluids interface.
    Popa MV; Demetrescu I; Suh SH; Vasilescu E; Drob P; Ionita D; Vasilescu C
    Bioelectrochemistry; 2007 Nov; 71(2):126-34. PubMed ID: 17409027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3).
    Kitsugi T; Nakamura T; Oka M; Yan WQ; Goto T; Shibuya T; Kokubo T; Miyaji S
    J Biomed Mater Res; 1996 Oct; 32(2):149-56. PubMed ID: 8884489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast cell behavior on the new beta-type Ti-25Ta-25Nb alloy.
    Cimpean A; Mitran V; Ciofrangeanu CM; Galateanu B; Bertrand E; Gordin DM; Iordachescu D; Gloriant T
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1554-63. PubMed ID: 24364960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture.
    Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A
    Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium alloy modified with anti-biofouling zwitterionic polymer to facilitate formation of bio-mineral layer.
    Nishida M; Nakaji-Hirabayashi T; Kitano H; Saruwatari Y; Matsuoka K
    Colloids Surf B Biointerfaces; 2017 Apr; 152():302-310. PubMed ID: 28129602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.