These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 11996096)
1. Theoretical studies of binding modes of two covalent inhibitors of cysteine proteases. Drabik P; Politowska E; Czaplewski C; Kasprzykowski F; Lankiewicz L; Ciarkowski J Acta Biochim Pol; 2000; 47(4):1061-6. PubMed ID: 11996096 [TBL] [Abstract][Full Text] [Related]
2. Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity? Czaplewski C; Grzonka Z; Jaskólski M; Kasprzykowski F; Kozak M; Politowska E; Ciarkowski J Biochim Biophys Acta; 1999 May; 1431(2):290-305. PubMed ID: 10350606 [TBL] [Abstract][Full Text] [Related]
3. New peptidic cysteine protease inhibitors derived from the electrophilic alpha-amino acid aziridine-2,3-dicarboxylic acid. Schirmeister T J Med Chem; 1999 Feb; 42(4):560-72. PubMed ID: 10052963 [TBL] [Abstract][Full Text] [Related]
4. Peptidyl epoxides extended in the P' direction as cysteine protease inhibitors: effect on affinity and mechanism of inhibition. Perlman N; Hazan M; Shokhen M; Albeck A Bioorg Med Chem; 2008 Oct; 16(19):9032-9. PubMed ID: 18789705 [TBL] [Abstract][Full Text] [Related]
5. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases. Verhelst SH; Witte MD; Arastu-Kapur S; Fonovic M; Bogyo M Chembiochem; 2006 Jun; 7(6):943-50. PubMed ID: 16607671 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of cysteine proteases by peptides containing aziridine-2,3-dicarboxylic acid building blocks. Schirmeister T Biopolymers; 1999; 51(1):87-97. PubMed ID: 10380356 [TBL] [Abstract][Full Text] [Related]
7. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes. Watanabe D; Yamamoto A; Tomoo K; Matsumoto K; Murata M; Kitamura K; Ishida T J Mol Biol; 2006 Oct; 362(5):979-93. PubMed ID: 16950396 [TBL] [Abstract][Full Text] [Related]
8. Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria. Thakurta PG; Biswas S; Chakrabarti C; Sundd M; Jagannadham MV; Dattagupta JK Biochemistry; 2004 Feb; 43(6):1532-40. PubMed ID: 14769029 [TBL] [Abstract][Full Text] [Related]
9. Structural studies of cysteine proteases and their inhibitors. Grzonka Z; Jankowska E; Kasprzykowski F; Kasprzykowska R; Lankiewicz L; Wiczk W; Wieczerzak E; Ciarkowski J; Drabik P; Janowski R; Kozak M; Jaskólski M; Grubb A Acta Biochim Pol; 2001; 48(1):1-20. PubMed ID: 11440158 [TBL] [Abstract][Full Text] [Related]
10. Identification of novel parasitic cysteine protease inhibitors by use of virtual screening. 2. The available chemical directory. Desai PV; Patny A; Gut J; Rosenthal PJ; Tekwani B; Srivastava A; Avery M J Med Chem; 2006 Mar; 49(5):1576-84. PubMed ID: 16509575 [TBL] [Abstract][Full Text] [Related]
11. The 1,4-naphthoquinone scaffold in the design of cysteine protease inhibitors. Valente C; Moreira R; Guedes RC; Iley J; Jaffar M; Douglas KT Bioorg Med Chem; 2007 Aug; 15(15):5340-50. PubMed ID: 17532221 [TBL] [Abstract][Full Text] [Related]
12. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Franco OL; Grossi de Sá MF; Sales MP; Mello LV; Oliveira AS; Rigden DJ Proteins; 2002 Nov; 49(3):335-41. PubMed ID: 12360523 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic recognition between enzyme and inhibitor: interaction between papain and leupeptin. Costabel M; Vallejo DF; Grigera JR Arch Biochem Biophys; 2001 Oct; 394(2):161-6. PubMed ID: 11594729 [TBL] [Abstract][Full Text] [Related]
14. Terpyridine platinum(II) complexes inhibit cysteine proteases by binding to active-site cysteine. Lo YC; Su WC; Ko TP; Wang NC; Wang AH J Biomol Struct Dyn; 2011 Oct; 29(2):267-82. PubMed ID: 21875148 [TBL] [Abstract][Full Text] [Related]
15. eta(1)-N-succinimidato complexes of iron, molybdenum and tungsten as reversible inhibitors of papain. Rudolf B; Salmain M; Martel A; Palusiak M; Zakrzewski J J Inorg Biochem; 2009 Aug; 103(8):1162-8. PubMed ID: 19616302 [TBL] [Abstract][Full Text] [Related]
16. Organic azide inhibitors of cysteine proteases. Le GT; Abbenante G; Madala PK; Hoang HN; Fairlie DP J Am Chem Soc; 2006 Sep; 128(38):12396-7. PubMed ID: 16984172 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria. Ghosh R; Chakraborty S; Chakrabarti C; Dattagupta JK; Biswas S FEBS J; 2008 Feb; 275(3):421-34. PubMed ID: 18167146 [TBL] [Abstract][Full Text] [Related]
18. Nonpeptidic, noncovalent inhibitors of the cysteine protease cathepsin S. Thurmond RL; Beavers MP; Cai H; Meduna SP; Gustin DJ; Sun S; Almond HJ; Karlsson L; Edwards JP J Med Chem; 2004 Sep; 47(20):4799-801. PubMed ID: 15369380 [TBL] [Abstract][Full Text] [Related]
19. From good substrates to good inhibitors: design of inhibitors for serine and thiol proteases. Baggio R; Shi YQ; Wu YQ; Abeles Biochemistry; 1996 Mar; 35(11):3351-3. PubMed ID: 8639483 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic studies on the inactivation of papain by epoxysuccinyl inhibitors. Meara JP; Rich DH J Med Chem; 1996 Aug; 39(17):3357-66. PubMed ID: 8765519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]