These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. Balasubramanian A; Ponnuraj K J Mol Biol; 2010 Jul; 400(3):274-83. PubMed ID: 20471401 [TBL] [Abstract][Full Text] [Related]
3. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches. Filiz E; Vatansever R; Ozyigit II Mol Biol Rep; 2016 Mar; 43(3):129-40. PubMed ID: 26852122 [TBL] [Abstract][Full Text] [Related]
4. Insights into the role and structure of plant ureases. Follmer C Phytochemistry; 2008 Jan; 69(1):18-28. PubMed ID: 17706733 [TBL] [Abstract][Full Text] [Related]
9. Cysteine based novel noncompetitive inhibitors of urease(s)--distinctive inhibition susceptibility of microbial and plant ureases. Amtul Z; Kausar N; Follmer C; Rozmahel RF; Atta-Ur-Rahman ; Kazmi SA; Shekhani MS; Eriksen JL; Khan KM; Choudhary MI Bioorg Med Chem; 2006 Oct; 14(19):6737-44. PubMed ID: 16859909 [TBL] [Abstract][Full Text] [Related]
10. Ureases as multifunctional toxic proteins: A review. Carlini CR; Ligabue-Braun R Toxicon; 2016 Feb; 110():90-109. PubMed ID: 26690979 [TBL] [Abstract][Full Text] [Related]
11. Interplay of metal ions and urease. Carter EL; Flugga N; Boer JL; Mulrooney SB; Hausinger RP Metallomics; 2009; 1(3):207-21. PubMed ID: 20046957 [TBL] [Abstract][Full Text] [Related]
12. Molecular biology of microbial ureases. Mobley HL; Island MD; Hausinger RP Microbiol Rev; 1995 Sep; 59(3):451-80. PubMed ID: 7565414 [TBL] [Abstract][Full Text] [Related]
13. Opinion: nickel and urease in plants: still many knowledge gaps. Polacco JC; Mazzafera P; Tezotto T Plant Sci; 2013 Feb; 199-200():79-90. PubMed ID: 23265321 [TBL] [Abstract][Full Text] [Related]
14. Canavalia ensiformis urease, Jaburetox and derived peptides form ion channels in planar lipid bilayers. Piovesan AR; Martinelli AH; Ligabue-Braun R; Schwartz JL; Carlini CR Arch Biochem Biophys; 2014 Apr; 547():6-17. PubMed ID: 24583269 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic catalysis of urea decomposition: elimination or hydrolysis? Estiu G; Merz KM J Am Chem Soc; 2004 Sep; 126(38):11832-42. PubMed ID: 15382918 [TBL] [Abstract][Full Text] [Related]
16. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Benini S; Rypniewski WR; Wilson KS; Miletti S; Ciurli S; Mangani S Structure; 1999 Feb; 7(2):205-16. PubMed ID: 10368287 [TBL] [Abstract][Full Text] [Related]
17. Influence of the primary structure of enzymes on the formation of CaCO2 polymorphs: a comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Sondi I; Salopek-Sondi B Langmuir; 2005 Sep; 21(19):8876-82. PubMed ID: 16142973 [TBL] [Abstract][Full Text] [Related]
18. Competitive hydrolytic and elimination mechanisms in the urease catalyzed decomposition of urea. Estiu G; Merz KM J Phys Chem B; 2007 Aug; 111(34):10263-74. PubMed ID: 17676790 [TBL] [Abstract][Full Text] [Related]
19. The assembly of the plant urease activation complex and the essential role of the urease accessory protein G (UreG) in delivery of nickel to urease. Myrach T; Zhu A; Witte CP J Biol Chem; 2017 Sep; 292(35):14556-14565. PubMed ID: 28710280 [TBL] [Abstract][Full Text] [Related]
20. Nickel as a micronutrient element for plants. Dalton DA; Russell SA; Evans HJ Biofactors; 1988 Jan; 1(1):11-6. PubMed ID: 3076427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]