These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11996184)

  • 21. Limits of simulation based high resolution EBSD.
    Alkorta J
    Ultramicroscopy; 2013 Aug; 131():33-8. PubMed ID: 23676453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope.
    Trimby PW
    Ultramicroscopy; 2012 Sep; 120():16-24. PubMed ID: 22796555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.
    Brodusch N; Demers H; Gauvin R
    Ultramicroscopy; 2015 Jan; 148():123-131. PubMed ID: 25461589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of microscope parameter and specimen thickness of spatial resolution of transmission electron backscatter diffraction.
    Wang YZ; Kong MG; Liu ZW; Lin CC; Zeng Y
    J Microsc; 2016 Oct; 264(1):34-40. PubMed ID: 27086586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Segmentation of 3D EBSD data for subgrain boundary identification and feature characterization.
    Loeb A; Ferry M; Bassman L
    Ultramicroscopy; 2016 Feb; 161():83-89. PubMed ID: 26630071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of dynamic grain growth by electron microscopy and EBSD.
    Rofman OV; Bate PS; Brough I; Humphreys FJ
    J Microsc; 2009 Mar; 233(3):432-41. PubMed ID: 19250464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of accelerating voltage and specimen thickness on the spatial resolution of transmission electron backscatter diffraction in Cu.
    Shih JW; Kuo KW; Kuo JC; Kuo TY
    Ultramicroscopy; 2017 Jun; 177():43-52. PubMed ID: 28284057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth Directions of Precipitates in the Al-Si-Mg-Hf Alloy Using Combined EBSD and FIB 3D-Reconstruction Techniques.
    Wang X; Xing Y; Huang H; Li Y; Jia Z; Liu Q
    Microsc Microanal; 2015 Jun; 21(3):588-93. PubMed ID: 25951774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selectively Electron-Transparent Microstamping Toward Concurrent Digital Image Correlation and High-Angular Resolution Electron Backscatter Diffraction (EBSD) Analysis.
    Ruggles TJ; Bomarito GF; Cannon AH; Hochhalter JD
    Microsc Microanal; 2017 Dec; 23(6):1091-1095. PubMed ID: 29199627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pattern center determination in electron backscatter diffraction microscopy.
    Basinger J; Fullwood D; Kacher J; Adams B
    Microsc Microanal; 2011 Jun; 17(3):330-40. PubMed ID: 21600069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of Geometrically Necessary Dislocations of a Partially Recrystallized Aluminum Alloy Using 2D EBSD.
    Seyed Salehi M; Anjabin N; Kim HS
    Microsc Microanal; 2019 Jun; 25(3):656-663. PubMed ID: 30969165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Backscattered electron imaging and electron backscattered diffraction in the study of bacterial attachment to titanium alloy structure.
    Wang A; Jones IP; Landini G; Mei J; Tse YY; Li YX; Ke L; Huang Y; Liu LI; Wang C; Sammons RL
    J Microsc; 2018 Apr; 270(1):53-63. PubMed ID: 29023718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introduction and comparison of new EBSD post-processing methodologies.
    Wright SI; Nowell MM; Lindeman SP; Camus PP; De Graef M; Jackson MA
    Ultramicroscopy; 2015 Dec; 159 Pt 1():81-94. PubMed ID: 26342553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.
    Brodusch N; Demers H; Gauvin R
    J Microsc; 2013 Apr; 250(1):1-14. PubMed ID: 23346885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dislocation substructures in pure aluminium after creep deformation as studied by electron backscatter diffraction.
    Serrano-Munoz I; Fernández R; Saliwan-Neumann R; González-Doncel G; Bruno G
    J Appl Crystallogr; 2022 Aug; 55(Pt 4):860-869. PubMed ID: 35974726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction.
    Babinsky K; De Kloe R; Clemens H; Primig S
    Ultramicroscopy; 2014 Sep; 144():9-18. PubMed ID: 24815026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformation compatibility in a single crystalline Ni superalloy.
    Jiang J; Zhang T; Dunne FP; Britton TB
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150690. PubMed ID: 26997901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization by Scanning Precession Electron Diffraction of an Aggregate of Bridgmanite and Ferropericlase Deformed at HP-HT.
    Nzogang BC; Bouquerel J; Cordier P; Mussi A; Girard J; Karato S
    Geochem Geophys Geosyst; 2018 Mar; 19(3):582-594. PubMed ID: 29937698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The characterization of low-angle boundaries by EBSD.
    Bate PS; Knutsen RD; Brough I; Humphreys FJ
    J Microsc; 2005 Oct; 220(Pt 1):36-46. PubMed ID: 16269062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy.
    Renversade L; Quey R; Ludwig W; Menasche D; Maddali S; Suter RM; Borbély A
    IUCrJ; 2016 Jan; 3(Pt 1):32-42. PubMed ID: 26870379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.