These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11996337)

  • 1. Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors.
    Zhang W; DiGiano FA
    Water Res; 2002 Mar; 36(6):1469-82. PubMed ID: 11996337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting bacterial growth in drinking water distribution system.
    Lu W; Zhang XJ
    Biomed Environ Sci; 2005 Apr; 18(2):137-40. PubMed ID: 16001834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system.
    Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J
    Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance.
    Wolfe RL; Lieu NI; Izaguirre G; Means EG
    Appl Environ Microbiol; 1990 Feb; 56(2):451-62. PubMed ID: 2306090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological stability in drinking water: a regression analysis of influencing factors.
    Lu W; Zhang XJ
    J Environ Sci (China); 2005; 17(3):395-8. PubMed ID: 16083110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods.
    Zhang J; Li WY; Wang F; Qian L; Xu C; Liu Y; Qi W
    Chemosphere; 2016 Oct; 161():43-52. PubMed ID: 27421100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full-scale studies of factors related to coliform regrowth in drinking water.
    LeChevallier MW; Welch NJ; Smith DB
    Appl Environ Microbiol; 1996 Jul; 62(7):2201-11. PubMed ID: 8779557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of HPC(R2A) for regrowth control in non-chlorinated distribution systems.
    Uhl W; Schaule G
    Int J Food Microbiol; 2004 May; 92(3):317-25. PubMed ID: 15145590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biostability analysis for drinking water distribution systems.
    Srinivasan S; Harrington GW
    Water Res; 2007 May; 41(10):2127-38. PubMed ID: 17408720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population diversity in model potable water biofilms receiving chlorine or chloramine residual.
    Williams MM; Santo Domingo JW; Meckes MC
    Biofouling; 2005; 21(5-6):279-88. PubMed ID: 16522541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regrowth potential of chlorine-resistant bacteria in drinking water under chloramination.
    Wu X; Nan J; Shen J; Kang J; Li D; Yan P; Wang W; Wang B; Zhao S; Chen Z
    J Hazard Mater; 2022 Apr; 428():128264. PubMed ID: 35051770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox gradients in distribution systems influence water quality, corrosion, and microbial ecology.
    Masters S; Wang H; Pruden A; Edwards MA
    Water Res; 2015 Jan; 68():140-9. PubMed ID: 25462724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.
    Gillespie S; Lipphaus P; Green J; Parsons S; Weir P; Juskowiak K; Jefferson B; Jarvis P; Nocker A
    Water Res; 2014 Nov; 65():224-34. PubMed ID: 25123436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.
    Bai X; Zhi X; Zhu H; Meng M; Zhang M
    Water Res; 2015 Jan; 68():812-20. PubMed ID: 25466639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system.
    Lee DG; Park SJ; Kim SJ
    J Microbiol Biotechnol; 2007 Sep; 17(9):1558-62. PubMed ID: 18062238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biostability in distribution systems in one city in southern China: characteristics, modeling and control strategy.
    Lu P; Zhang X; Zhang C; Niu Z; Xie S; Chen C
    J Environ Sci (China); 2014 Feb; 26(2):323-31. PubMed ID: 25076523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of chlorine-to-nitrogen ratio on the inactivation of heterotrophic bacteria in bulk water during chloramination.
    Zhang Y; Ye H; Zhou L; Hu L
    Water Environ Res; 2013 Jun; 85(6):568-73. PubMed ID: 23833820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of residual chlorine on the interaction between bacterial growth and assimilable organic carbon and biodegradable organic carbon in reclaimed water.
    Ren X; Chen H
    Sci Total Environ; 2021 Jan; 752():141223. PubMed ID: 32898796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking water.
    Stewart MH; Wolfe RL; Means EG
    Appl Environ Microbiol; 1990 Dec; 56(12):3822-9. PubMed ID: 2082828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking the concentration of heterotrophic plate count bacteria from the source to the consumer's tap.
    Pepper IL; Rusin P; Quintanar DR; Haney C; Josephson KL; Gerba CP
    Int J Food Microbiol; 2004 May; 92(3):289-95. PubMed ID: 15145587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.