These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 11997013)
1. Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. Hemmi H; Ishibashi J; Hara S; Yamakawa M FEBS Lett; 2002 May; 518(1-3):33-8. PubMed ID: 11997013 [TBL] [Abstract][Full Text] [Related]
2. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. Hara S; Yamakawa M J Biol Chem; 1995 Dec; 270(50):29923-7. PubMed ID: 8530391 [TBL] [Abstract][Full Text] [Related]
3. Isolation, gene expression and solution structure of a novel moricin analogue, antibacterial peptide from a lepidopteran insect, Spodoptera litura. Oizumi Y; Hemmi H; Minami M; Asaoka A; Yamakawa M Biochim Biophys Acta; 2005 Aug; 1752(1):83-92. PubMed ID: 16115804 [TBL] [Abstract][Full Text] [Related]
4. Solution structure, antibacterial activity, and expression profile of Manduca sexta moricin. Dai H; Rayaprolu S; Gong Y; Huang R; Prakash O; Jiang H J Pept Sci; 2008 Jul; 14(7):855-63. PubMed ID: 18265434 [TBL] [Abstract][Full Text] [Related]
5. Production in Escherichia of moricin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Hara S; Yamakawa M Biochem Biophys Res Commun; 1996 Mar; 220(3):664-9. PubMed ID: 8607822 [TBL] [Abstract][Full Text] [Related]
6. Inducible gene expression of moricin, a unique antibacterial peptide from the silkworm (Bombyx mori). Furukawa S; Tanaka H; Nakazawa H; Ishibashi J; Shono T; Yamakawa M Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):265-71. PubMed ID: 10229682 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
8. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
9. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Hara S; Yamakawa M Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):651-6. PubMed ID: 7654207 [TBL] [Abstract][Full Text] [Related]
10. Immune proteins and their gene expression in the silkworm, Bombyx mori. Yamakawa M; Tanaka H Dev Comp Immunol; 1999; 23(4-5):281-9. PubMed ID: 10426422 [TBL] [Abstract][Full Text] [Related]
11. Identification of In-Vitro Red Fluorescent Protein with Antipathogenic Activity from the Midgut of the Silkworm (Bombyx Mori L.). Manjunatha GKS; Peter A; Naika MBN; Niranjana P; Shamprasad P Protein Pept Lett; 2018; 25(3):302-313. PubMed ID: 29336243 [TBL] [Abstract][Full Text] [Related]
12. Structural study of novel antimicrobial peptides, nigrocins, isolated from Rana nigromaculata. Park S; Park SH; Ahn HC; Kim S; Kim SS; Lee BJ; Lee BJ FEBS Lett; 2001 Oct; 507(1):95-100. PubMed ID: 11682065 [TBL] [Abstract][Full Text] [Related]
13. Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Park K; Oh D; Shin SY; Hahm KS; Kim Y Biochem Biophys Res Commun; 2002 Jan; 290(1):204-12. PubMed ID: 11779154 [TBL] [Abstract][Full Text] [Related]
14. The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Sipos D; Andersson M; Ehrenberg A Eur J Biochem; 1992 Oct; 209(1):163-9. PubMed ID: 1396696 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial Mechanism of Gloverin2 from Silkworm, Wang Q; Guo P; Wang Z; Liu H; Zhang Y; Jiang S; Han W; Xia Q; Zhao P Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081443 [TBL] [Abstract][Full Text] [Related]
16. Gloverins of the silkworm Bombyx mori: structural and binding properties and activities. Yi HY; Deng XJ; Yang WY; Zhou CZ; Cao Y; Yu XQ Insect Biochem Mol Biol; 2013 Jul; 43(7):612-25. PubMed ID: 23567591 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide. Koo YS; Kim JM; Park IY; Yu BJ; Jang SA; Kim KS; Park CB; Cho JH; Kim SC Peptides; 2008 Jul; 29(7):1102-8. PubMed ID: 18406495 [TBL] [Abstract][Full Text] [Related]
18. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Gazit E; Lee WJ; Brey PT; Shai Y Biochemistry; 1994 Sep; 33(35):10681-92. PubMed ID: 8075068 [TBL] [Abstract][Full Text] [Related]
19. Deletion of the carboxyl-terminal residue disrupts the amino-terminal folding, self-association, and thermal stability of an amphipathic antimicrobial peptide. Lee CS; Tung WC; Lin YH J Pept Sci; 2014 Jun; 20(6):438-45. PubMed ID: 24764036 [TBL] [Abstract][Full Text] [Related]
20. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Oh D; Shin SY; Lee S; Kang JH; Kim SD; Ryu PD; Hahm KS; Kim Y Biochemistry; 2000 Oct; 39(39):11855-64. PubMed ID: 11009597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]