BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11997027)

  • 1. Catalase negative Staphylococcus aureus retain virulence in mouse model of chronic granulomatous disease.
    Messina CG; Reeves EP; Roes J; Segal AW
    FEBS Lett; 2002 May; 518(1-3):107-10. PubMed ID: 11997027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virulence of catalase-deficient aspergillus nidulans in p47(phox)-/- mice. Implications for fungal pathogenicity and host defense in chronic granulomatous disease.
    Chang YC; Segal BH; Holland SM; Miller GF; Kwon-Chung KJ
    J Clin Invest; 1998 May; 101(9):1843-50. PubMed ID: 9576747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of myeloperoxidase and bacterial metabolism in chemiluminescence of granulocytes from patients with chronic granulomatous disease.
    Allen RC; Mills EL; McNitt TR; Quie PG
    J Infect Dis; 1981 Oct; 144(4):344-8. PubMed ID: 6270214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infections with Haemophilus species in chronic granulomatous disease: insights into the interaction of bacterial catalase and H2O2 production.
    Kottilil S; Malech HL; Gill VJ; Holland SM
    Clin Immunol; 2003 Mar; 106(3):226-30. PubMed ID: 12706409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infections associated with chronic granulomatous disease: linking genetics to phenotypic expression.
    Ben-Ari J; Wolach O; Gavrieli R; Wolach B
    Expert Rev Anti Infect Ther; 2012 Aug; 10(8):881-94. PubMed ID: 23030328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Staphylococcus aureus by oleuropein is mediated by hydrogen peroxide.
    Zanichelli D; Baker TA; Clifford MN; Adams MR
    J Food Prot; 2005 Jul; 68(7):1492-6. PubMed ID: 16013394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of bactericidal activity in chronic granulomatous disease cells by glucose-oxidase-containing liposomes.
    Gerber CE; Bruchelt G; Falk UB; Kimpfler A; Hauschild O; Kuçi S; Bächi T; Niethammer D; Schubert R
    Blood; 2001 Nov; 98(10):3097-105. PubMed ID: 11698296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro efficacy of several antibiotics against intracellular S. aureus in chronic granulomatous disease.
    Zimmerli W; Lew PD; Suter S; Wyss M; Waldvogel FA
    Helv Paediatr Acta; 1983 Mar; 38(1):51-61. PubMed ID: 6862995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase is not required for spontaneous and Staphylococcus aureus-induced apoptosis of monocytes.
    v Bernuth H; Kulka C; Roesler J; Gahr M; Rösen-Wolff A
    Ann Hematol; 2004 Apr; 83(4):206-11. PubMed ID: 14730390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring catalase activity in Staphylococcus aureus subsp. anaerobius leads to loss of pathogenicity for lambs.
    de la Fuente R; Díez RM; Domínguez-Bernal G; Orden JA; Martínez-Pulgarín S
    Vet Res; 2010; 41(4):41. PubMed ID: 20167202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of staphylococcal iron content on the killing of Staphylococcus aureus by polymorphonuclear leukocytes.
    Repine JE; Fox RB; Berger EM; Harada RN
    Infect Immun; 1981 Apr; 32(1):407-10. PubMed ID: 7216492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of reactive oxygen species in neutrophil apoptosis following ingestion of heat-killed Staphylococcus aureus.
    Yamamoto A; Taniuchi S; Tsuji S; Hasui M; Kobayashi Y
    Clin Exp Immunol; 2002 Sep; 129(3):479-84. PubMed ID: 12197889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellularly survived Staphylococcus aureus after phagocytosis are more virulent in inducing cytotoxicity in fresh murine peritoneal macrophages utilizing TLR-2 as a possible target.
    Nandi A; Bishayi B
    Microb Pathog; 2016 Aug; 97():131-47. PubMed ID: 27270212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased phagocytic activity of polymorphonuclear leukocytes of chronic granulomatous disease as determined with flow cytometric assay.
    Hasui M; Hirabayashi Y; Hattori K; Kobayashi Y
    J Lab Clin Med; 1991 Apr; 117(4):291-8. PubMed ID: 1849170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalase and superoxide dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates.
    Kanafani H; Martin SE
    J Clin Microbiol; 1985 Apr; 21(4):607-10. PubMed ID: 3988902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal--leukocyte interaction.
    Mandell GL
    J Clin Invest; 1975 Mar; 55(3):561-6. PubMed ID: 1117067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEGylated D-amino acid oxidase restores bactericidal activity of neutrophils in chronic granulomatous disease via hypochlorite.
    Nakamura H; Fang J; Mizukami T; Nunoi H; Maeda H
    Exp Biol Med (Maywood); 2012 Jun; 237(6):703-8. PubMed ID: 22715431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus paracasei subsp. paracasei isolated from the human vagina.
    Ocaña VS; de Ruiz Holgado AA; Nader-Macías ME
    FEMS Immunol Med Microbiol; 1999 Feb; 23(2):87-92. PubMed ID: 10076905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-formylpterin intracellularly generates hydrogen peroxide and restores the impaired bactericidal activity of human neutrophils.
    Yamashita K; Arai T; Fukuda K; Mori H; Ishii H; Nishioka M; Tajima K; Makino K; Sasada M
    Biochem Biophys Res Commun; 2001 Nov; 289(1):85-90. PubMed ID: 11708781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidant-mediated phosphatidylserine exposure and macrophage uptake of activated neutrophils: possible impairment in chronic granulomatous disease.
    Hampton MB; Vissers MC; Keenan JI; Winterbourn CC
    J Leukoc Biol; 2002 May; 71(5):775-81. PubMed ID: 11994501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.