BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 11997135)

  • 41. Age-dependent changes in the structure-function correlation of ADP/ATP-translocating mitochondrial membranes.
    Nohl H
    Gerontology; 1982; 28(6):354-9. PubMed ID: 7160622
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Binding of ADP to rat liver cytosolic proteins and its influence on the ratio of free ATP/free ADP.
    Mörikofer-Zwez S; Walter P
    Biochem J; 1989 Apr; 259(1):117-24. PubMed ID: 2497727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The rate of ATP export in the extramitochondrial phase via the adenine nucleotide translocator changes in aging in mitochondria isolated from heart left ventricle of either normotensive or spontaneously hypertensive rats.
    Atlante A; Seccia TM; Marra E; Passarella S
    Mech Ageing Dev; 2011 Oct; 132(10):488-95. PubMed ID: 21855562
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of temperature and coronary flow on the metabolic and mechanical function of the isolated rat heart.
    Blum H; Ivanics T; Zhang D; Wroblewski K; Osbakken MD
    Cardiology; 1993; 82(4):238-48. PubMed ID: 8402750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle.
    Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio.
    Bohnensack R
    Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scaling mitochondrial volume in heart to body mass.
    Hoppeler H; Lindstedt SL; Claassen H; Taylor CR; Mathieu O; Weibel ER
    Respir Physiol; 1984 Feb; 55(2):131-7. PubMed ID: 6729269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feedback Regulation and Time Hierarchy of Oxidative Phosphorylation in Cardiac Mitochondria.
    Vinnakota KC; Bazil JN; Van den Bergh F; Wiseman RW; Beard DA
    Biophys J; 2016 Feb; 110(4):972-80. PubMed ID: 26910434
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate-site interactions in the membrane-bound adenine-nucleotide carrier as disclosed by ADP and ATP analogs.
    Block MR; Vignais PV
    Biochim Biophys Acta; 1984 Nov; 767(2):369-76. PubMed ID: 6093873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts.
    Ambrosio G; Jacobus WE; Mitchell MC; Litt MR; Becker LC
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H560-6. PubMed ID: 2916688
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spin biochemistry: magnetic 24Mg-25Mg-26Mg isotope effect in mitochondrial ADP phosphorylation.
    Buchachenko AL; Kouznetsov DA; Arkhangelsky SE; Orlova MA; Markarian AA
    Cell Biochem Biophys; 2005; 43(2):243-51. PubMed ID: 16049349
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts.
    Wilding JR; Joubert F; de Araujo C; Fortin D; Novotova M; Veksler V; Ventura-Clapier R
    J Physiol; 2006 Aug; 575(Pt 1):191-200. PubMed ID: 16740607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioenergetic analysis of oxidative metabolism following traumatic brain injury in rats.
    Vink R; Golding EM; Headrick JP
    J Neurotrauma; 1994 Jun; 11(3):265-74. PubMed ID: 7996581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Perspectives on: SGP symposium on mitochondrial physiology and medicine: metabolic homeostasis of the heart.
    Balaban RS
    J Gen Physiol; 2012 Jun; 139(6):407-14. PubMed ID: 22641635
    [No Abstract]   [Full Text] [Related]  

  • 55. Longitudinal diffusion barriers imposed by myofilaments and mitochondria in murine cardiac myocytes.
    Deisl C; Chung JH; Hilgemann DW
    J Gen Physiol; 2023 Oct; 155(10):. PubMed ID: 37555782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Myocardial Infarction as a Consequence of Mitochondrial Dysfunction.
    Wal P; Aziz N; Singh YK; Wal A; Kosey S; Rai AK
    Curr Cardiol Rev; 2023; 19(6):23-30. PubMed ID: 37157208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of cytochrome c oxidase contributes to health and optimal life.
    Kadenbach B
    World J Biol Chem; 2020 Sep; 11(2):52-61. PubMed ID: 33024517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and Expression of Sphingosine 1-Phosphate Receptors in Human and Rat Heart.
    Ahmed N; Linardi D; Decimo I; Mehboob R; Gebrie MA; Innamorati G; Luciani GB; Faggian G; Rungatscher A
    Front Pharmacol; 2017; 8():312. PubMed ID: 28596734
    [No Abstract]   [Full Text] [Related]  

  • 59. Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload.
    Phillips D; Covian R; Aponte AM; Glancy B; Taylor JF; Chess D; Balaban RS
    Am J Physiol Regul Integr Comp Physiol; 2012 May; 302(9):R1034-48. PubMed ID: 22378775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion.
    Solaini G; Harris DA
    Biochem J; 2005 Sep; 390(Pt 2):377-94. PubMed ID: 16108756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.