BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11997259)

  • 1. Effect of reactive oxygen species on NH4+ permeation in Xenopus laevis oocytes.
    Cougnon M; Benammou S; Brouillard F; Hulin P; Planelles G
    Am J Physiol Cell Physiol; 2002 Jun; 282(6):C1445-53. PubMed ID: 11997259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further investigation of ionic diffusive properties and of NH4+ pathways in Xenopus laevis oocyte cell membrane.
    Cougnon M; Bouyer P; Hulin P; Anagnostopoulos T; Planelles G
    Pflugers Arch; 1996 Feb; 431(4):658-67. PubMed ID: 8596713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways of NH3/NH4+ permeation across Xenopus laevis oocyte cell membrane.
    Burckhardt BC; Frömter E
    Pflugers Arch; 1992 Jan; 420(1):83-6. PubMed ID: 1372714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of primary, secondary and tertiary amines on membrane potential and intracellular pH in Xenopus laevis oocytes.
    Burckhardt BC; Thelen P
    Pflugers Arch; 1995 Jan; 429(3):306-12. PubMed ID: 7761254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species and calcium homeostasis in cultured human intestinal smooth muscle cells.
    Bielefeldt K; Whiteis CA; Sharma RV; Abboud FM; Conklin JL
    Am J Physiol; 1997 Jun; 272(6 Pt 1):G1439-50. PubMed ID: 9227480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrogenic ammonium transport by renal Rhbg.
    Nakhoul NL; Schmidt E; Abdulnour-Nakhoul SM; Hamm LL
    Transfus Clin Biol; 2006; 13(1-2):147-53. PubMed ID: 16580864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of procaine on membrane potential and intracellular pH in Xenopus laevis oocytes.
    Rodeau JL; Flament S; Browaeys E; Vilain JP
    Mol Membr Biol; 1998; 15(3):145-51. PubMed ID: 9859112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NH4+ conductance in Xenopus laevis oocytes.II. Effect Of hypoosmolality.
    Ludwig A; Burckhardt G; Burckhardt BC
    Pflugers Arch; 1999 Feb; 437(3):484-90. PubMed ID: 9914407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NH(4)(+) conductance in Xenopus laevis oocytes. III. Effect of NH(3).
    Boldt M; Burckhardt G; Burckhardt BC
    Pflugers Arch; 2003 Sep; 446(6):652-7. PubMed ID: 12827361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NH4+ conductance in Xenopus laevis oocytes. I. Basic observations.
    Burckhardt BC; Burckhardt G
    Pflugers Arch; 1997 Jul; 434(3):306-12. PubMed ID: 9178631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammonium interaction with the epithelial sodium channel.
    Nakhoul NL; Hering-Smith KS; Abdulnour-Nakhoul SM; Hamm LL
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F493-502. PubMed ID: 11502598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between intracellular pH and chloride in Xenopus oocytes expressing the chloride channel ClC-0.
    Cooper GJ; Fong P
    Am J Physiol Cell Physiol; 2003 Feb; 284(2):C331-8. PubMed ID: 12388074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maitotoxin (MTX) activates a nonselective cation channel in Xenopus laevis oocytes.
    Bielfeld-Ackermann A; Range C; Korbmacher C
    Pflugers Arch; 1998 Aug; 436(3):329-37. PubMed ID: 9644213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic Ca2+ movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca2+ channels.
    Az-ma T; Saeki N; Yuge O
    Br J Pharmacol; 1999 Mar; 126(6):1462-70. PubMed ID: 10217541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-bicarbonate cotransporter NBCn1/Slc4a7 inhibits NH4Cl-mediated inward current in Xenopus oocytes.
    Lee S; Choi I
    Exp Physiol; 2011 Aug; 96(8):745-55. PubMed ID: 21571816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxidants and glutamate receptor activation on mitochondrial membrane potential in rat forebrain neurons.
    Scanlon JM; Reynolds IJ
    J Neurochem; 1998 Dec; 71(6):2392-400. PubMed ID: 9832137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of renal Rhbg as an NH4(+) transporter.
    Nakhoul NL; Dejong H; Abdulnour-Nakhoul SM; Boulpaep EL; Hering-Smith K; Hamm LL
    Am J Physiol Renal Physiol; 2005 Jan; 288(1):F170-81. PubMed ID: 15353405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
    Leipziger J; MacGregor GG; Cooper GJ; Xu J; Hebert SC; Giebisch G
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F919-26. PubMed ID: 11053053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of gastric H,K-ATPase activity by cations, voltage and intracellular pH analyzed by voltage clamp fluorometry in Xenopus oocytes.
    Dürr KL; Tavraz NN; Friedrich T
    PLoS One; 2012; 7(3):e33645. PubMed ID: 22448261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes.
    Holm LM; Jahn TP; Møller AL; Schjoerring JK; Ferri D; Klaerke DA; Zeuthen T
    Pflugers Arch; 2005 Sep; 450(6):415-28. PubMed ID: 15988592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.