These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 11997269)
1. Adenylyl cyclase: a new target for heart failure therapeutics. Feldman AM Circulation; 2002 Apr; 105(16):1876-8. PubMed ID: 11997269 [No Abstract] [Full Text] [Related]
2. Still stressed out but doing fine: normalization of wall stress is superfluous to maintaining cardiac function in chronic pressure overload. Sano M; Schneider MD Circulation; 2002 Jan; 105(1):8-10. PubMed ID: 11772868 [No Abstract] [Full Text] [Related]
4. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Roth DM; Gao MH; Lai NC; Drumm J; Dalton N; Zhou JY; Zhu J; Entrikin D; Hammond HK Circulation; 1999 Jun; 99(24):3099-102. PubMed ID: 10377071 [TBL] [Abstract][Full Text] [Related]
5. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Esposito G; Rapacciuolo A; Naga Prasad SV; Takaoka H; Thomas SA; Koch WJ; Rockman HA Circulation; 2002 Jan; 105(1):85-92. PubMed ID: 11772881 [TBL] [Abstract][Full Text] [Related]
6. Of phospholamban, mice, and humans with heart failure. Bristow M Circulation; 2001 Feb; 103(6):787-8. PubMed ID: 11171783 [No Abstract] [Full Text] [Related]
7. Inhibition of betaARK1 restores impaired biochemical beta-adrenergic receptor responsiveness but does not rescue CREB(A133) induced cardiomyopathy. Eckhart AD; Fentzke RC; Lepore J; Lang R; Lin H; Lefkowitz RJ; Koch WJ; Leiden JM J Mol Cell Cardiol; 2002 Jun; 34(6):669-77. PubMed ID: 12054854 [TBL] [Abstract][Full Text] [Related]
8. Defective beta-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. Cho MC; Rapacciuolo A; Koch WJ; Kobayashi Y; Jones LR; Rockman HA J Biol Chem; 1999 Aug; 274(32):22251-6. PubMed ID: 10428792 [TBL] [Abstract][Full Text] [Related]
9. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. Major JL; Salih M; Tuana BS J Mol Cell Cardiol; 2015 Jul; 84():179-90. PubMed ID: 25944088 [TBL] [Abstract][Full Text] [Related]
10. Transgenic replacement of type V adenylyl cyclase identifies a critical mechanism of beta-adrenergic receptor dysfunction in the G alpha q overexpressing mouse. Tepe NM; Liggett SB FEBS Lett; 1999 Sep; 458(2):236-40. PubMed ID: 10481072 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of myocardial Gsalpha prevents full expression of catecholamine desensitization despite increased beta-adrenergic receptor kinase. Vatner DE; Asai K; Iwase M; Ishikawa Y; Wagner TE; Shannon RP; Homcy CJ; Vatner SF J Clin Invest; 1998 May; 101(9):1916-22. PubMed ID: 9576756 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of impaired beta-adrenergic receptor signaling in G(alphaq)-mediated cardiac hypertrophy and ventricular dysfunction. Dorn GW; Tepe NM; Wu G; Yatani A; Liggett SB Mol Pharmacol; 2000 Feb; 57(2):278-87. PubMed ID: 10648637 [TBL] [Abstract][Full Text] [Related]
13. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart. Ping P; Gelzer-Bell R; Roth DA; Kiel D; Insel PA; Hammond HK J Clin Invest; 1995 Mar; 95(3):1271-80. PubMed ID: 7883975 [TBL] [Abstract][Full Text] [Related]
14. Localization of a "postreceptor" defect in human dilated cardiomyopathy. Böhm M; Gierschik P; Jakobs KH; Schnabel P; Kemkes B; Erdmann E Am J Cardiol; 1989 Oct; 64(12):812-4. PubMed ID: 2552787 [No Abstract] [Full Text] [Related]
15. Functionally active targeting domain of the beta-adrenergic receptor kinase: an inhibitor of G beta gamma-mediated stimulation of type II adenylyl cyclase. Inglese J; Luttrell LM; Iñiguez-Lluhi JA; Touhara K; Koch WJ; Lefkowitz RJ Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3637-41. PubMed ID: 8170960 [TBL] [Abstract][Full Text] [Related]
16. What is the role of beta-adrenergic signaling in heart failure? Lohse MJ; Engelhardt S; Eschenhagen T Circ Res; 2003 Nov; 93(10):896-906. PubMed ID: 14615493 [TBL] [Abstract][Full Text] [Related]
17. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes. Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G J Mol Cell Cardiol; 2008 Dec; 45(6):761-9. PubMed ID: 18851973 [TBL] [Abstract][Full Text] [Related]
18. Beta-adrenergic signal transduction following carvedilol treatment in hypertensive cardiac hypertrophy. Böhm M; Ettelbrück S; Flesch M; van Gilst WH; Knorr A; Maack C; Pinto YM; Paul M; Teisman AC; Zolk O Cardiovasc Res; 1998 Oct; 40(1):146-55. PubMed ID: 9876327 [TBL] [Abstract][Full Text] [Related]
19. New insight into the role of enhanced adrenergic receptor-effector coupling in the heart. Feldman AM; McTiernan C Circulation; 1999 Aug; 100(6):579-82. PubMed ID: 10441092 [No Abstract] [Full Text] [Related]
20. Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. Asai K; Yang GP; Geng YJ; Takagi G; Bishop S; Ishikawa Y; Shannon RP; Wagner TE; Vatner DE; Homcy CJ; Vatner SF J Clin Invest; 1999 Sep; 104(5):551-8. PubMed ID: 10487769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]