These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 11997704)
1. Adrenergic control of glycemia in the paraventricular nucleus of the hypothalamus in pigeons. Sabi M; Raimondi C; Marques S; Paschoalini MA; Marino-Neto J Neuroreport; 2002 May; 13(6):871-5. PubMed ID: 11997704 [TBL] [Abstract][Full Text] [Related]
2. Food intake after adrenaline and noradrenaline injections into the hypothalamic paraventricular nucleus in pigeons. Hagemann LF; Costa CV; Zeni LZ; Freitas CG; Marino-Neto J; Paschoalini MA Physiol Behav; 1998 Jul; 64(5):645-52. PubMed ID: 9817576 [TBL] [Abstract][Full Text] [Related]
3. Thromboxane A Tachi M; Yamaguchi N; Okada S Eur J Pharmacol; 2020 May; 875():173034. PubMed ID: 32097659 [TBL] [Abstract][Full Text] [Related]
4. Central injections of noradrenaline and adrenaline differentially affect plasma free fatty acid and glucose in conscious pigeons (Columba livia). das Neves J; Hackl LP; Freitas CG; Paschoalini MA; Marino-Neto J J Comp Physiol B; 2000 Sep; 170(5-6):379-86. PubMed ID: 11083520 [TBL] [Abstract][Full Text] [Related]
5. Effects of subtypes of adrenergic and angiotensinergic antagonists on the water and sodium intake induced by adrenaline injected into the paraventricular nucleus. de Arruda Camargo LA; Saad WA; Cerri PS; de Arruda Camargo GM Brain Res; 2003 Dec; 994(2):234-42. PubMed ID: 14642649 [TBL] [Abstract][Full Text] [Related]
6. Central beta-adrenoceptor involvement in neural control of blood glucose in pigeons. Souza WF; Freitas CG; Marino-Neto J; Paschoalini MA Physiol Behav; 1996 Sep; 60(3):889-94. PubMed ID: 8873265 [TBL] [Abstract][Full Text] [Related]
7. Interaction between paraventricular nucleus and medial septal area on the renal effects induced by adrenaline. de Arruda Camargo LA; Saad WA; de Souza Villa P Auton Neurosci; 2004 Apr; 111(2):135-9. PubMed ID: 15182743 [TBL] [Abstract][Full Text] [Related]
8. Medullary adrenergic neurons contribute to the neuropeptide Y-ergic innervation of hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in the rat. Wittmann G; Liposits Z; Lechan RM; Fekete C Neurosci Lett; 2002 May; 324(1):69-73. PubMed ID: 11983297 [TBL] [Abstract][Full Text] [Related]
9. Possible role of adrenoceptors in the hypothalamic paraventricular nucleus in corticotropin-releasing factor-induced sympatho-adrenomedullary outflow in rats. Okada S; Yamaguchi N Auton Neurosci; 2017 Mar; 203():74-80. PubMed ID: 28202248 [TBL] [Abstract][Full Text] [Related]
10. Attenuated drinking response induced by angiotensinergic activation of subfornical organ projections to the paraventricular nucleus in estrogen-treated rats. Tanaka J; Kariya K; Miyakubo H; Sakamaki K; Nomura M Neurosci Lett; 2002 May; 324(3):242-6. PubMed ID: 12009532 [TBL] [Abstract][Full Text] [Related]
11. Local Corticotropin-Releasing Factor Signaling in the Hypothalamic Paraventricular Nucleus. Jiang Z; Rajamanickam S; Justice NJ J Neurosci; 2018 Feb; 38(8):1874-1890. PubMed ID: 29352046 [TBL] [Abstract][Full Text] [Related]
12. Noradrenergic excitatory inputs to median preoptic neurones in rats. Tanaka J; Nishimura J; Kimura F; Nomura M Neuroreport; 1992 Oct; 3(10):946-8. PubMed ID: 1384765 [TBL] [Abstract][Full Text] [Related]
13. Paraventricular alpha1- and alpha2-adrenergic receptors mediate hindbrain lipoprivation-induced suppression of luteinizing hormone pulses in female rats. Sajapitak S; Uenoyama Y; Yamada S; Kinoshita M; Iwata K; Bari FY; I'anson H; Tsukamula H; Maeda K J Reprod Dev; 2008 Jun; 54(3):198-202. PubMed ID: 18344615 [TBL] [Abstract][Full Text] [Related]
14. Increased feeding and neuropeptide Y (NPY) but not NPY mRNA levels in the hypothalamus of the rat following central administration of the serotonin synthesis inhibitor p-chlorophenylalanine. Dryden S; Frankish HM; Wang Q; Williams G Brain Res; 1996 Jun; 724(2):232-7. PubMed ID: 8828573 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide inhibits the firing activity of hypothalamic paraventricular neurons that innervate the medulla oblongata: role of GABA. Li Y; Zhang W; Stern JE Neuroscience; 2003; 118(3):585-601. PubMed ID: 12710969 [TBL] [Abstract][Full Text] [Related]
16. Functional relationship between subfornical organ cholinergic stimulation and cellular activation in the hypothalamus and AV3V region. Xu Z; Pekarek E; Ge J; Yao J Brain Res; 2001 Dec; 922(2):191-200. PubMed ID: 11743949 [TBL] [Abstract][Full Text] [Related]
17. Centrally applied nitric oxide donor elevates plasma corticosterone by activation of the hypothalamic noradrenergic neurons in rats. Okada S; Murakami Y; Yokotani K Brain Res; 2002 Jun; 939(1-2):26-33. PubMed ID: 12020848 [TBL] [Abstract][Full Text] [Related]
18. Noradrenergic regulation of parvocellular neurons in the rat hypothalamic paraventricular nucleus. Daftary SS; Boudaba C; Tasker JG Neuroscience; 2000; 96(4):743-51. PubMed ID: 10727792 [TBL] [Abstract][Full Text] [Related]
19. Adrenergic nerves mediate the venoconstrictor response to PVN stimulation. Martin DS; Egland MC; Barnes LU; Vogel EM Brain Res; 2006 Mar; 1076(1):93-100. PubMed ID: 16473331 [TBL] [Abstract][Full Text] [Related]
20. Opposite regulation of body temperature by cholinergic input to the paraventricular nucleus and supraoptic nucleus in rats. Takahashi A; Ishimaru H; Ikarashi Y; Kishi E; Maruyama Y Brain Res; 2001 Aug; 909(1-2):102-11. PubMed ID: 11478926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]