BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 11999071)

  • 21. Performance assessment of NAPL remediation in heterogeneous alluvium.
    Meinardus HW; Dwarakanath V; Ewing J; Hirasaki GJ; Jackson RE; Jin M; Ginn JS; Londergan JT; Miller CA; Pope GA
    J Contam Hydrol; 2002 Feb; 54(3-4):173-93. PubMed ID: 11900327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2005 Jun; 78(1-2):87-103. PubMed ID: 15949608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers.
    Zoller U; Reznik A
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):392-7. PubMed ID: 17120829
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of multicomponent diffusion on NAPL dissolution from spherical ternary mixtures.
    Brahma PP; Harmon TC
    J Contam Hydrol; 2003 Dec; 67(1-4):43-60. PubMed ID: 14607469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points.
    Saenton S; Illangasekare TH; Soga K; Saba TA
    J Contam Hydrol; 2002 Nov; 59(1-2):27-44. PubMed ID: 12683638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A method of estimating multicomponent nonaqueous-phase liquid mass in porous media using aqueous concentration ratios.
    Devlint JF; Barbaro JR
    Environ Toxicol Chem; 2001 Nov; 20(11):2443-9. PubMed ID: 11699767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling of soil gas radon as an in situ partitioning tracer for quantifying LNAPL contamination.
    Cecconi A; Verginelli I; Baciocchi R
    Sci Total Environ; 2022 Feb; 806(Pt 2):150593. PubMed ID: 34592297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.
    Zhu J; Sun D
    J Contam Hydrol; 2016 Sep; 192():158-164. PubMed ID: 27500747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-situ characterization of soil-water content using gas-phase partitioning tracer tests: field-scale evaluation.
    Keller JM; Brusseau ML
    Environ Sci Technol; 2003 Jul; 37(14):3141-4. PubMed ID: 12901662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2002 Sep; 58(1-2):129-46. PubMed ID: 12236552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of pore scale NAPL morphology in homogeneous sands as a function of grain size and NAPL dissolution.
    Cho J; Annable MD
    Chemosphere; 2005 Nov; 61(7):899-908. PubMed ID: 15950262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic.
    Vencelides Z; Sracek O; Prommer H
    J Contam Hydrol; 2007 Jan; 89(3-4):270-94. PubMed ID: 17070964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Errors in NAPL volume estimates due to systematic measurement errors during partitioning tracer tests.
    Brooks MC; Wise WR
    Environ Sci Technol; 2005 Sep; 39(18):7164-9. PubMed ID: 16201644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers.
    Schubert M; Paschke A; Lau S; Geyer W; Knöller K
    Environ Pollut; 2007 Feb; 145(3):920-7. PubMed ID: 16781031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measured mass transfer coefficients in porous media using specific interfacial area.
    Cho J; Annable MD; Rao PS
    Environ Sci Technol; 2005 Oct; 39(20):7883-8. PubMed ID: 16295851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand.
    Govindarajan D; Deshpande AP; Raghunathan R
    J Contam Hydrol; 2018 Feb; 209():1-13. PubMed ID: 29329939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach.
    Dridi L; Pollet I; Razakarisoa O; Schäfer G
    J Contam Hydrol; 2009 Jun; 107(1-2):22-44. PubMed ID: 19395120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional visualization and quantification of non-aqueous phase liquid volumes in natural porous media using a medical X-ray Computed Tomography scanner.
    Goldstein L; Prasher SO; Ghoshal S
    J Contam Hydrol; 2007 Aug; 93(1-4):96-110. PubMed ID: 17350716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A practical model for mobile, residual, and entrapped NAPL in water-wet porous media.
    White MD; Oostrom M; Lenhard RJ
    Ground Water; 2004; 42(5):734-46. PubMed ID: 15457796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.