BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11999076)

  • 1. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment.
    da Rocha NC; de Campos RC; Rossi AM; Moreira EL; Barbosa Ado F; Moure GT
    Environ Sci Technol; 2002 Apr; 36(7):1630-5. PubMed ID: 11999076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of cadmium ion by means of synthetic hydroxyapatite.
    Lusvardi G; Malavasi G; Menabue L; Saladini M
    Waste Manag; 2002; 22(8):853-7. PubMed ID: 12423044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the mechanisms of lead immobilization by hydroxyapatite.
    Mavropoulos E; Rossi AM; Costa AM; Perez CA; Moreira JC; Saldanha M
    Environ Sci Technol; 2002 Apr; 36(7):1625-9. PubMed ID: 11999075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EDTA impact on Cd2+ migration in apatite-water system.
    Tõnsuaadu K; Viipsi K; Trikkel A
    J Hazard Mater; 2008 Jun; 154(1-3):491-7. PubMed ID: 18054159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area.
    Li H; Guo X; Ye X
    J Environ Sci (China); 2017 Feb; 52():141-150. PubMed ID: 28254032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solidification and stabilization of cadmium ions in sand-cement-clay mixture.
    Shawabkeh RA
    J Hazard Mater; 2005 Oct; 125(1-3):237-43. PubMed ID: 16006034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells.
    Alidoust D; Kawahigashi M; Yoshizawa S; Sumida H; Watanabe M
    J Environ Manage; 2015 Mar; 150():103-110. PubMed ID: 25438117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Sorption kinetics of fluoride by artificial and natural hydroxyapatite].
    Trzeciak M
    Ann Acad Med Stetin; 2003; 49():91-109. PubMed ID: 15552842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems.
    Peld M; Tõnsuaadu K; Bender V
    Environ Sci Technol; 2004 Nov; 38(21):5626-31. PubMed ID: 15575281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First principal observation documenting the three-dimensional uptake of cadmium and spatial distribution of cadmium hydroxyapatite mineral in bone char.
    Biswas PP; Rathod J; Chiang CY; Liang B; Wang CC; Lee YC; Chuang YC; Loni PC; Chen WH; Wang SL
    Chemosphere; 2023 Oct; 337():139357. PubMed ID: 37392801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption behavior of fluoride ions from aqueous solutions by hydroxyapatite.
    Jiménez-Reyes M; Solache-Ríos M
    J Hazard Mater; 2010 Aug; 180(1-3):297-302. PubMed ID: 20439134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite.
    Corami A; Mignardi S; Ferrini V
    J Colloid Interface Sci; 2008 Jan; 317(2):402-8. PubMed ID: 17949731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments.
    Lee S; An J; Kim YJ; Nam K
    J Hazard Mater; 2011 Feb; 186(2-3):2117-22. PubMed ID: 21255927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Co2+ from aqueous solutions by hydroxyapatite.
    Smiciklas I; Dimović I; Mitrić M
    Water Res; 2006 Jul; 40(12):2267-74. PubMed ID: 16766010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran.
    Nouri L; Ghodbane I; Hamdaoui O; Chiha M
    J Hazard Mater; 2007 Oct; 149(1):115-25. PubMed ID: 17459582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite.
    Sairam Sundaram C; Viswanathan N; Meenakshi S
    Bioresour Technol; 2008 Nov; 99(17):8226-30. PubMed ID: 18434136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Sorption-desorption behaviors of Cd2+ and Pb2+ in different pollution load soils].
    Chen S; Sun LN; Sun TH; Chao L
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1819-26. PubMed ID: 17974251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Adsorption Behaviors of Lead on Multi-Walled Carbon Nanotube-Hydroxyapatite Composites].
    Zhang JL; Li Y
    Huan Jing Ke Xue; 2015 Jul; 36(7):2554-63. PubMed ID: 26489325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonaceous material obtained from exhausted coffee by an aqueous solution combustion process and used for cobalt (II) and cadmium (II) sorption.
    Serrano-Gómez J; López-González H; Olguín MT; Bulbulian S
    J Environ Manage; 2015 Jun; 156():121-7. PubMed ID: 25841193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite.
    Corami A; Mignardi S; Ferrini V
    J Hazard Mater; 2007 Jul; 146(1-2):164-70. PubMed ID: 17204364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.