BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11999412)

  • 1. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers.
    Satake M; Enjoh M; Nakamura Y; Takano T; Kawamura Y; Arai S; Shimizu M
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):378-84. PubMed ID: 11999412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of ACE Inhibitory Peptides Ile-Gln-Pro and Val-Glu-Pro Derived from Spirulina platensis Across Caco-2 Monolayers.
    He YY; Li TT; Chen JX; She XX; Ren DF; Lu J
    J Food Sci; 2018 Oct; 83(10):2586-2592. PubMed ID: 30229911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile.
    Miguel M; Dávalos A; Manso MA; de la Peña G; Lasunción MA; López-Fandiño R
    Mol Nutr Food Res; 2008 Dec; 52(12):1507-13. PubMed ID: 18727013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models.
    Gleeson JP; Brayden DJ; Ryan SM
    Eur J Pharm Biopharm; 2017 Jun; 115():276-284. PubMed ID: 28315445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers.
    Ding L; Wang L; Zhang Y; Liu J
    J Agric Food Chem; 2015 Sep; 63(37):8143-50. PubMed ID: 26335384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers.
    Ding L; Wang L; Zhang T; Yu Z; Liu J
    Food Res Int; 2018 Apr; 106():475-480. PubMed ID: 29579950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.
    Guo Y; Gan J; Zhu Q; Zeng X; Sun Y; Wu Z; Pan D
    J Sci Food Agric; 2018 Feb; 98(3):976-983. PubMed ID: 28714227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models.
    Foltz M; Cerstiaens A; van Meensel A; Mols R; van der Pijl PC; Duchateau GS; Augustijns P
    Peptides; 2008 Aug; 29(8):1312-20. PubMed ID: 18490081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of Val-Leu-Pro-Val-Pro in human intestinal epithelial (Caco-2) cell monolayers.
    Lei L; Sun H; Liu D; Liu L; Li S
    J Agric Food Chem; 2008 May; 56(10):3582-6. PubMed ID: 18442243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium caprate enables the blood pressure-lowering effect of Ile-Pro-Pro and Leu-Lys-Pro in spontaneously hypertensive rats by indirectly overcoming PepT1 inhibition.
    Gleeson JP; Frías JM; Ryan SM; Brayden DJ
    Eur J Pharm Biopharm; 2018 Jul; 128():179-187. PubMed ID: 29684535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism, uptake, and transepithelial transport of the diastereomers of Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Bhatnagar PK; Takata JS; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Aug; 13(8):1213-8. PubMed ID: 8865315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane.
    Aito-Inoue M; Lackeyram D; Fan MZ; Sato K; Mine Y
    J Pept Sci; 2007 Jul; 13(7):468-74. PubMed ID: 17554807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transepithelial transport characteristics of the antihypertensive peptide, Lys-Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers.
    Sun H; Liu D; Li S; Qin Z
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):293-8. PubMed ID: 19202266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and Transport of Spent Hen-Derived ACE-Inhibitory Peptides IWHHT, IWH, and IW in Human Intestinal Caco-2 Cell Monolayers.
    Fan H; Xu Q; Hong H; Wu J
    J Agric Food Chem; 2018 Oct; 66(43):11347-11354. PubMed ID: 30280571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells.
    Thwaites DT; Cavet M; Hirst BH; Simmons NL
    Br J Pharmacol; 1995 Mar; 114(5):981-6. PubMed ID: 7780654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of micro-opioid receptor agonists and antagonist peptides across Caco-2 monolayer.
    Iwan M; Jarmołowska B; Bielikowicz K; Kostyra E; Kostyra H; Kaczmarski M
    Peptides; 2008 Jun; 29(6):1042-7. PubMed ID: 18355944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2.
    Shimizu M; Tsunogai M; Arai S
    Peptides; 1997; 18(5):681-7. PubMed ID: 9213361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transepithelial transport of milk derived bioactive peptide VLPVPQK.
    Vij R; Reddi S; Kapila S; Kapila R
    Food Chem; 2016 Jan; 190():681-688. PubMed ID: 26213026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers.
    Xu Q; Fan H; Yu W; Hong H; Wu J
    J Agric Food Chem; 2017 Aug; 65(34):7406-7414. PubMed ID: 28782363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.