These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 11999748)
1. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. III. Separation mechanism and gradient optimization. Mengerink Y; Peters R; van der Wal S; Claessens HA; Cramers CA J Chromatogr A; 2002 Mar; 949(1-2):307-26. PubMed ID: 11999748 [TBL] [Abstract][Full Text] [Related]
2. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. I. Injection procedure and column stability. Mengerink Y; Peters R; Kerkhoff M; Hellenbrand J; Omloo H; Andrien J; Vestjens M; van der Wal S J Chromatogr A; 2000 Apr; 876(1-2):37-50. PubMed ID: 10823500 [TBL] [Abstract][Full Text] [Related]
3. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. II. Methods of detection and quantification and overall long-term performance. Mengerink Y; Peters R; Kerkhoff M; Hellenbrand J; Omloo H; Andrien J; Vestjens M; van der Wal S J Chromatogr A; 2000 May; 878(1):45-55. PubMed ID: 10843544 [TBL] [Abstract][Full Text] [Related]
4. Analysis of higher polyamide-6 oligomers on a silica-based reversed-phase column with a gradient of formic acid as compared with hexafluoroisopropanol. Mengerink Y; van der Wal S; Claessens HA; Cramers CA J Chromatogr A; 2000 Feb; 871(1-2):259-68. PubMed ID: 10735306 [TBL] [Abstract][Full Text] [Related]
5. Endgroup-based separation and quantitation of polyamide-6,6 by means of critical chromatography. Mengerink Y; Peters R; van der Wal S; Claessens HA; Cramers CA J Chromatogr A; 2002 Mar; 949(1-2):337-49. PubMed ID: 11999750 [TBL] [Abstract][Full Text] [Related]
6. Cyclic oligomers in polyamide for food contact material: quantification by HPLC-CLND and single-substance calibration. Heimrich M; Bönsch M; Nickl H; Simat TJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(5):846-60. PubMed ID: 22329416 [TBL] [Abstract][Full Text] [Related]
7. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
8. Combination of linear solvent strength model and quantitative structure-retention relationships as a comprehensive procedure of approximate prediction of retention in gradient liquid chromatography. Baczek T; Kaliszan R J Chromatogr A; 2002 Jul; 962(1-2):41-55. PubMed ID: 12198971 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074 [TBL] [Abstract][Full Text] [Related]
10. Nylon-6 capillary-channeled polymer (C-CP) fibers as a hydrophobic interaction chromatography stationary phase for the separation of proteins. Stanelle RD; Marcus RK Anal Bioanal Chem; 2009 Jan; 393(1):273-81. PubMed ID: 18958449 [TBL] [Abstract][Full Text] [Related]
11. Separation and characterization of oligomers by reversed-phase high-performance liquid chromatography: a study on well-defined oligothiphenes. Vonk EC; Langeveld-Voss BM; van Dongen JL; Janssen RA; Claessens HA; Cramers CA J Chromatogr A; 2001 Mar; 911(1):13-26. PubMed ID: 11269591 [TBL] [Abstract][Full Text] [Related]
12. Two-column sequential injection chromatography--new approach for fast and effective analysis and its comparison with gradient elution chromatography. Chocholous P; Satínský D; Sklenárová H; Solich P Anal Chim Acta; 2010 May; 668(1):61-6. PubMed ID: 20457303 [TBL] [Abstract][Full Text] [Related]
13. Effect of gradient steepness on the kinetic performance limits and peak compression for reversed-phase gradient separations of small molecules. Vaňková N; De Vos J; Tyteca E; Desmet G; Edge T; Česlová L; Česla P; Eeltink S J Chromatogr A; 2015 Aug; 1409():152-8. PubMed ID: 26216237 [TBL] [Abstract][Full Text] [Related]
14. Retention mechanism, isocratic and gradient-elution separation and characterization of (co)polymers in normal-phase and reversed-phase high-performance liquid chromatography. Jandera P; Holcapek M; Kolárová L J Chromatogr A; 2000 Feb; 869(1-2):65-84. PubMed ID: 10720226 [TBL] [Abstract][Full Text] [Related]
15. Separation and quantification of the linear and cyclic structures of polyamide-6 at the critical point of adsorption. Mengerink Y; Peters R; deKoster CG; van der Wal S; Claessens HA; Cramers CA J Chromatogr A; 2001 Apr; 914(1-2):131-45. PubMed ID: 11358207 [TBL] [Abstract][Full Text] [Related]
16. Stationary-phase effects in gradient high-performance liquid chromatography. Jandera P; Halama M; Novotná K J Chromatogr A; 2004 Mar; 1030(1-2):33-41. PubMed ID: 15043251 [TBL] [Abstract][Full Text] [Related]
17. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH; Lee JW; Row KH J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619 [TBL] [Abstract][Full Text] [Related]
18. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents. Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210 [TBL] [Abstract][Full Text] [Related]
19. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients. Wiese S; Teutenberg T; Schmidt TC J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258 [TBL] [Abstract][Full Text] [Related]
20. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. Vaast A; Tyteca E; Desmet G; Schoenmakers PJ; Eeltink S J Chromatogr A; 2014 Aug; 1355():149-57. PubMed ID: 24986072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]