These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11999777)

  • 1. Toxicity evaluation of new antifouling compounds using suspension-cultured fish cells.
    Okamura H; Watanabe T; Aoyama I; Hasobe M
    Chemosphere; 2002 Feb; 46(7):945-51. PubMed ID: 11999777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of new antifouling compounds on the development of sea urchin.
    Kobayashi N; Okamura H
    Mar Pollut Bull; 2002 Aug; 44(8):748-51. PubMed ID: 12269477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae.
    Jung SM; Bae JS; Kang SG; Son JS; Jeon JH; Lee HJ; Jeon JY; Sidharthan M; Ryu SH; Shin HW
    Mar Pollut Bull; 2017 Nov; 124(2):811-818. PubMed ID: 27919420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species.
    Bao VW; Leung KM; Qiu JW; Lam MH
    Mar Pollut Bull; 2011 May; 62(5):1147-51. PubMed ID: 21420693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas.
    Mai H; Morin B; Pardon P; Gonzalez P; Budzinski H; Cachot J
    Mar Environ Res; 2013 Aug; 89():1-8. PubMed ID: 23727205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative toxicity of antifouling compounds on the development of sea urchin.
    Perina FC; Abessa DM; Pinho GL; Fillmann G
    Ecotoxicology; 2011 Nov; 20(8):1870-80. PubMed ID: 21710306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test.
    Wang H; Li Y; Huang H; Xu X; Wang Y
    Environ Toxicol Chem; 2011 Mar; 30(3):692-703. PubMed ID: 21154844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimentally derived acute and chronic copper Biotic Ligand Models for rainbow trout.
    Crémazy A; Wood CM; Ng TY; Smith DS; Chowdhury MJ
    Aquat Toxicol; 2017 Nov; 192():224-240. PubMed ID: 28987990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of bioassay volume, water column height, and octanol-water partition coefficient on the toxicity of pesticides to rainbow trout.
    Altinok I; Capkin E; Boran H
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):596-600. PubMed ID: 21528427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of organotin alternative antifoulants on oyster embryo.
    Tsunemasa N; Okamura H
    Arch Environ Contam Toxicol; 2011 Jul; 61(1):128-34. PubMed ID: 20859624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Toxicities of Metal Pyrithiones Including Their Degradation Compounds and Organotin Antifouling Biocides to the Japanese Killifish Oryzias latipes.
    Ohji M; Harino H
    Arch Environ Contam Toxicol; 2017 Aug; 73(2):285-293. PubMed ID: 28528410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action.
    Knauer K; Lampert C; Gonzalez-Valero J
    Chemosphere; 2007 Jul; 68(8):1435-41. PubMed ID: 17512969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051
    Moon YS; Kim M; Hong CP; Kang JH; Jung JH
    Ecotoxicol Environ Saf; 2019 Sep; 180():23-32. PubMed ID: 31059904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss).
    Naddy RB; Cohen AS; Stubblefield WA
    Environ Toxicol Chem; 2015 Apr; 34(4):809-15. PubMed ID: 25641563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of antifouling biocides contaminations in Maizuru Bay, Japan.
    Eguchi S; Harino H; Yamamoto Y
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):684-93. PubMed ID: 19771461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer.
    Li AJ; Leung PT; Bao VW; Yi AX; Leung KM
    Ecotoxicology; 2014 Oct; 23(8):1564-73. PubMed ID: 25098775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic effects of irgarol and diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality.
    Manzo S; Buono S; Cremisini C
    Arch Environ Contam Toxicol; 2006 Jul; 51(1):61-8. PubMed ID: 16446998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the accumulation and effects of copper pyrithione and copper sulphate on rainbow trout larvae.
    Bourdon C; Couture P; Gourves PY; Clérandeau C; Gonzalez P; Cachot J
    Environ Toxicol Pharmacol; 2023 Nov; 104():104308. PubMed ID: 37926371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ecological risk assessment of the exposure and effects of 2,4-D acid to rainbow trout (Onchorhyncus mykiss).
    Fairchild JF; Feltz KP; Allert AL; Sappington LC; Nelson KJ; Valle JA
    Arch Environ Contam Toxicol; 2009 May; 56(4):754-60. PubMed ID: 19165410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid toxicity assessment of six antifouling booster biocides using a microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes.
    Lee H; Depuydt S; Choi S; Han T; Park J
    Ecotoxicology; 2020 Jul; 29(5):559-570. PubMed ID: 32333251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.