These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 11999842)
1. Molecular genetics of heat tolerance and heat shock proteins in cereals. Maestri E; Klueva N; Perrotta C; Gulli M; Nguyen HT; Marmiroli N Plant Mol Biol; 2002; 48(5-6):667-81. PubMed ID: 11999842 [TBL] [Abstract][Full Text] [Related]
2. Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Kaur R; Sinha K; Bhunia RK Mol Biol Rep; 2019 Apr; 46(2):2577-2593. PubMed ID: 30758807 [TBL] [Abstract][Full Text] [Related]
3. Phosphoproteomics in cereals. Yang P Methods Mol Biol; 2015; 1306():47-57. PubMed ID: 25930692 [TBL] [Abstract][Full Text] [Related]
4. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Zenda T; Wang N; Dong A; Zhou Y; Duan H Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930 [TBL] [Abstract][Full Text] [Related]
5. Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates. Lavania D; Dhingra A; Siddiqui MH; Al-Whaibi MH; Grover A Plant Physiol Biochem; 2015 Jan; 86():100-108. PubMed ID: 25438142 [TBL] [Abstract][Full Text] [Related]
7. Abiotic stress and control of grain number in cereals. Dolferus R; Ji X; Richards RA Plant Sci; 2011 Oct; 181(4):331-41. PubMed ID: 21889038 [TBL] [Abstract][Full Text] [Related]
8. QTLian breeding for climate resilience in cereals: progress and prospects. Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800 [TBL] [Abstract][Full Text] [Related]
9. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Wang X; Huang W; Liu J; Yang Z; Huang B Plant Biotechnol J; 2017 Feb; 15(2):237-248. PubMed ID: 27500592 [TBL] [Abstract][Full Text] [Related]
10. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Huang YC; Niu CY; Yang CR; Jinn TL Plant Physiol; 2016 Oct; 172(2):1182-1199. PubMed ID: 27493213 [TBL] [Abstract][Full Text] [Related]
11. Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction. Liu H; Able AJ; Able JA Sci Rep; 2019 Oct; 9(1):14986. PubMed ID: 31628402 [TBL] [Abstract][Full Text] [Related]
12. Silkworm thermal biology: a review of heat shock response, heat shock proteins and heat acclimation in the domesticated silkworm, Bombyx mori. Manjunatha HB; Rajesh RK; Aparna HS J Insect Sci; 2010; 10():204. PubMed ID: 21265618 [TBL] [Abstract][Full Text] [Related]
13. SMARTER De-Stressed Cereal Breeding. Liu H; Able AJ; Able JA Trends Plant Sci; 2016 Nov; 21(11):909-925. PubMed ID: 27514453 [TBL] [Abstract][Full Text] [Related]
14. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204 [TBL] [Abstract][Full Text] [Related]
15. Characterization of novel heat-responsive transcription factor (TaHSFA6e) gene involved in regulation of heat shock proteins (HSPs) - A key member of heat stress-tolerance network of wheat. Kumar RR; Goswami S; Singh K; Dubey K; Rai GK; Singh B; Singh S; Grover M; Mishra D; Kumar S; Bakshi S; Rai A; Pathak H; Chinnusamy V; Praveen S J Biotechnol; 2018 Aug; 279():1-12. PubMed ID: 29746879 [TBL] [Abstract][Full Text] [Related]
16. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Hu Z; Song N; Zheng M; Liu X; Liu Z; Xing J; Ma J; Guo W; Yao Y; Peng H; Xin M; Zhou DX; Ni Z; Sun Q Plant J; 2015 Dec; 84(6):1178-91. PubMed ID: 26576681 [TBL] [Abstract][Full Text] [Related]
17. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts. Shenhar Y; Rasouly A; Biran D; Ron EZ Environ Microbiol; 2009 Dec; 11(12):2989-97. PubMed ID: 19624711 [TBL] [Abstract][Full Text] [Related]
19. Mild heat induces a distinct "eustress" response in Chinese Hamster Ovary cells but does not induce heat shock protein synthesis. Peksel B; Gombos I; Péter M; Vigh L; Tiszlavicz Á; Brameshuber M; Balogh G; Schütz GJ; Horváth I; Vigh L; Török Z Sci Rep; 2017 Nov; 7(1):15643. PubMed ID: 29142280 [TBL] [Abstract][Full Text] [Related]