BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 11999949)

  • 1. New technology for deep light distribution in tissue for phototherapy.
    Chen J; Keltner L; Christophersen J; Zheng F; Krouse M; Singhal A; Wang SS
    Cancer J; 2002; 8(2):154-63. PubMed ID: 11999949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Photodynamic therapy: principles and therapeutic indications].
    Ficheux H
    Ann Pharm Fr; 2009 Jan; 67(1):32-40. PubMed ID: 19152849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current clinical and preclinical photosensitizers for use in photodynamic therapy.
    Detty MR; Gibson SL; Wagner SJ
    J Med Chem; 2004 Jul; 47(16):3897-915. PubMed ID: 15267226
    [No Abstract]   [Full Text] [Related]  

  • 4. Structure-activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer.
    Cauchon N; Ali H; Hasséssian HM; van Lier JE
    Photochem Photobiol Sci; 2010 Mar; 9(3):331-41. PubMed ID: 20221459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purpurins and benzochlorins as sensitizers for photodynamic therapy.
    Garbo GM
    J Photochem Photobiol B; 1996 Jul; 34(2-3):109-16. PubMed ID: 8810528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Approaches to Photodynamic Therapy from Types I, II and III to Type IV Using One or More Photons.
    Scherer KM; Bisby RH; Botchway SW; Parker AW
    Anticancer Agents Med Chem; 2017; 17(2):171-189. PubMed ID: 27173966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A first comparative study of purpurinimide-based fluorinated vs. nonfluorinated photosensitizers for photodynamic therapy.
    Gryshuk AL; Graham A; Pandey SK; Potter WR; Missert JR; Oseroff A; Dougherty TJ; Pandey RK
    Photochem Photobiol; 2002 Nov; 76(5):555-9. PubMed ID: 12462653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo comparison of argon-pumped and diode lasers for photodynamic therapy using second-generation photosensitizers.
    Hammer-Wilson MJ; Sun CH; Ghahramanlou M; Berns MW
    Lasers Surg Med; 1998; 23(5):274-80. PubMed ID: 9888323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin.
    Hanakova A; Bogdanova K; Tomankova K; Pizova K; Malohlava J; Binder S; Bajgar R; Langova K; Kolar M; Mosinger J; Kolarova H
    Microbiol Res; 2014; 169(2-3):163-70. PubMed ID: 23899404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porphycenes: facts and prospects in photodynamic therapy of cancer.
    Stockert JC; Cañete M; Juarranz A; Villanueva A; Horobin RW; Borrell JI; Teixidó J; Nonell S
    Curr Med Chem; 2007; 14(9):997-1026. PubMed ID: 17439399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power.
    Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A charge-switchable, four-armed polymeric photosensitizer for photodynamic cancer therapy.
    Lee CS; Park W; Jo YU; Na K
    Chem Commun (Camb); 2014 Apr; 50(33):4354-7. PubMed ID: 24643769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental photodynamic laser therapy for rheumatoid arthritis with a second generation photosensitizer.
    Hendrich C; Hüttmann G; Vispo-Seara JL; Houserek S; Siebert WE
    Knee Surg Sports Traumatol Arthrosc; 2000; 8(3):190-4. PubMed ID: 10883433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The translocator protein as a potential molecular target for improved treatment efficacy in photodynamic therapy.
    Rogers L; Senge MO
    Future Med Chem; 2014 May; 6(7):775-92. PubMed ID: 24941872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nrf2-dependent induction of human ABC transporter ABCG2 and heme oxygenase-1 in HepG2 cells by photoactivation of porphyrins: biochemical implications for cancer cell response to photodynamic therapy.
    Hagiya Y; Adachi T; Ogura S; An R; Tamura A; Nakagawa H; Okura I; Mochizuki T; Ishikawa T
    J Exp Ther Oncol; 2008; 7(2):153-67. PubMed ID: 18771089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser and non-laser light sources for photodynamic therapy.
    Brancaleon L; Moseley H
    Lasers Med Sci; 2002; 17(3):173-86. PubMed ID: 12181632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Necrosis Depth and Photodynamic Threshold Dose with Redaporfin-PDT.
    Rocha LB; Soares HT; Mendes MIP; Cabrita A; Schaberle FA; Arnaut LG
    Photochem Photobiol; 2020 May; 96(3):692-698. PubMed ID: 32125692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [History of photodynamic therapy--past, present and future].
    Kato H
    Gan To Kagaku Ryoho; 1996 Jan; 23(1):8-15. PubMed ID: 8546474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria-Targeted Photodynamic Therapy with a Galactodendritic Chlorin to Enhance Cell Death in Resistant Bladder Cancer Cells.
    Pereira PM; Silva S; Bispo M; Zuzarte M; Gomes C; Girão H; Cavaleiro JA; Ribeiro CA; Tomé JP; Fernandes R
    Bioconjug Chem; 2016 Nov; 27(11):2762-2769. PubMed ID: 27750007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.