These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 12000612)

  • 41. Antibiotic uptake into gram-negative bacteria.
    Hancock RE; Bell A
    Eur J Clin Microbiol Infect Dis; 1988 Dec; 7(6):713-20. PubMed ID: 2850910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Resistance to antibiotics caused by decrease of the permeability in gram-negative bacteria].
    Nguyen Van JC; Gutmann L
    Presse Med; 1994 Mar; 23(11):522, 527-31. PubMed ID: 8022741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria.
    Poole K
    Antimicrob Agents Chemother; 2000 Oct; 44(10):2595-9. PubMed ID: 10991829
    [No Abstract]   [Full Text] [Related]  

  • 44. Use of the gram stain in microbiology.
    Beveridge TJ
    Biotech Histochem; 2001 May; 76(3):111-8. PubMed ID: 11475313
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport assays and permeability in pathogenic mycobacteria.
    Lanéelle MA; Daffé M
    Methods Mol Biol; 2009; 465():143-51. PubMed ID: 20560053
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A new method for the disruption of cell walls of gram-positive bacteria and mycobacteria on the point of nucleic acid extraction: sand method].
    Şahin F; Kıyan M; Karasartova D; Çalgın MK; Akhter S; Türegün Atasoy B
    Mikrobiyol Bul; 2016 Jan; 50(1):34-43. PubMed ID: 27058327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria.
    Scorciapino MA; Acosta-Gutierrez S; Benkerrou D; D'Agostino T; Malloci G; Samanta S; Bodrenko I; Ceccarelli M
    J Phys Condens Matter; 2017 Mar; 29(11):113001. PubMed ID: 28155846
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria.
    Winterhalter M; Ceccarelli M
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):63-7. PubMed ID: 26036449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fusion to cell-penetrating peptides will enable lytic enzymes to kill intracellular bacteria.
    Borysowski J; Górski A
    Med Hypotheses; 2010 Jan; 74(1):164-6. PubMed ID: 19656633
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of beta-sitosterol transformation in Mycobacterium vaccae with increased cell wall permeability.
    Korycka-Machała M; Rumijowska-Galewicz A; Lisowska K; Ziolkowskit A; Sedlacze L
    Acta Microbiol Pol; 2001; 50(2):107-15. PubMed ID: 11720305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Substrate-induced changes in Mycobacterium paraffinicum cells and cell membranes].
    Gusev MV; Koronelli TV; Korolev IuN; Komarova TI
    Mikrobiologiia; 1980; 49(5):761-5. PubMed ID: 7442571
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides.
    Bansal-Mutalik R; Nikaido H
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4958-63. PubMed ID: 24639491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theoretical evaluation of wall teichoic acids in the cavitation-mediated pores formation in Gram-positive bacteria subjected to an electric field.
    Rauch C; Leigh J
    Biochim Biophys Acta; 2015 Apr; 1850(4):595-601. PubMed ID: 25497464
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A tetrameric porin limits the cell wall permeability of Mycobacterium smegmatis.
    Engelhardt H; Heinz C; Niederweis M
    J Biol Chem; 2002 Oct; 277(40):37567-72. PubMed ID: 12130659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mycobacterial cell wall: structure and role in natural resistance to antibiotics.
    Jarlier V; Nikaido H
    FEMS Microbiol Lett; 1994 Oct; 123(1-2):11-8. PubMed ID: 7988876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular Modeling and Simulation of the Peptidoglycan Layer of Gram-Positive Bacteria
    Pokhrel R; Shakya R; Baral P; Chapagain P
    J Chem Inf Model; 2022 Oct; 62(20):4955-4962. PubMed ID: 35981320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances.
    Nikaido H
    Biochim Biophys Acta; 1976 Apr; 433(1):118-32. PubMed ID: 769835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transport of outer membrane lipids in mycobacteria.
    Touchette MH; Seeliger JC
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1340-1354. PubMed ID: 28110100
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physical insights into permeation of and resistance to antibiotics in bacteria.
    Ceccarelli M; Ruggerone P
    Curr Drug Targets; 2008 Sep; 9(9):779-88. PubMed ID: 18781923
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Porins in the cell wall of mycobacteria.
    Trias J; Jarlier V; Benz R
    Science; 1992 Nov; 258(5087):1479-81. PubMed ID: 1279810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.