These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12000800)

  • 1. The aerodynamics of revolving wings I. Model hawkmoth wings.
    Usherwood JR; Ellington CP
    J Exp Biol; 2002 Jun; 205(Pt 11):1547-64. PubMed ID: 12000800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail.
    Usherwood JR; Ellington CP
    J Exp Biol; 2002 Jun; 205(Pt 11):1565-76. PubMed ID: 12000801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective.
    Nabawy MRA; Crowther WJ
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW; van Heijst GF; Altshuler DL; Lentink D
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspect ratio effects on revolving wings with Rossby number consideration.
    Lee YJ; Lua KB; Lim TT
    Bioinspir Biomim; 2016 Sep; 11(5):056013. PubMed ID: 27608653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The novel aerodynamics of insect flight: applications to micro-air vehicles.
    Ellington CP
    J Exp Biol; 1999 Dec; 202(Pt 23):3439-48. PubMed ID: 10562527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments.
    Wang ZJ; Birch JM; Dickinson MH
    J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure.
    Han JS; Kim JK; Chang JW; Han JH
    Bioinspir Biomim; 2015 Jul; 10(4):046014. PubMed ID: 26226478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight.
    Nabawy MR; Crowthe WJ
    PLoS One; 2015; 10(8):e0134972. PubMed ID: 26252657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aerodynamic model for insect flapping wings in forward flight.
    Han JS; Chang JW; Han JH
    Bioinspir Biomim; 2017 Mar; 12(3):036004. PubMed ID: 28362636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.
    Nakata T; Liu H
    Proc Biol Sci; 2012 Feb; 279(1729):722-31. PubMed ID: 21831896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects.
    Zhang C; Hedrick TL; Mittal R
    PLoS One; 2015; 10(8):e0132093. PubMed ID: 26252016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.
    Birch JM; Dickson WB; Dickinson MH
    J Exp Biol; 2004 Mar; 207(Pt 7):1063-72. PubMed ID: 14978049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings.
    Jardin T; David L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013011. PubMed ID: 25122373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.