BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 12001230)

  • 1. Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation.
    Falconi M; Parrilli L; Battistoni A; Desideri A
    Proteins; 2002 Jun; 47(4):513-20. PubMed ID: 12001230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli, revealed by X-ray crystallography.
    Pesce A; Capasso C; Battistoni A; Folcarelli S; Rotilio G; Desideri A; Bolognesi M
    J Mol Biol; 1997 Dec; 274(3):408-20. PubMed ID: 9405149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static and dynamic water molecules in Cu,Zn superoxide dismutase.
    Falconi M; Brunelli M; Pesce A; Ferrario M; Bolognesi M; Desideri A
    Proteins; 2003 Jun; 51(4):607-15. PubMed ID: 12784219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of the enzyme Cu, Zn superoxide dismutase.
    Branco RJ; Fernandes PA; Ramos MJ
    J Phys Chem B; 2006 Aug; 110(33):16754-62. PubMed ID: 16913815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved enzyme-substrate electrostatic attraction in prokaryotic Cu,Zn superoxide dismutases.
    Folcarelli S; Battistoni A; Falconi M; O'Neill P; Rotilio G; Desideri A
    Biochem Biophys Res Commun; 1998 Mar; 244(3):908-11. PubMed ID: 9535766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper/zinc-superoxide dismutase from Epinephelus malabaricus cDNA and enzyme property.
    Ken CF; Cheng YF; Chang CF; Lin CT
    J Agric Food Chem; 2003 Sep; 51(19):5688-94. PubMed ID: 12952420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive functional features in prokaryotic and eukaryotic Cu,Zn superoxide dismutases.
    Gabbianelli R; D'Orazio M; Pacello F; O'Neill P; Nicolini L; Rotilio G; Battistoni A
    Biol Chem; 2004 Aug; 385(8):749-54. PubMed ID: 15449711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the engineering of a super efficient enzyme.
    Folcarelli S; Venerini F; Battistoni A; O'neill P; Rotilio G; Desideri A
    Biochem Biophys Res Commun; 1999 Mar; 256(2):425-8. PubMed ID: 10079201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics, hydration, and motional averaging of a loop-gated artificial protein cavity: the W191G mutant of cytochrome c peroxidase in water as revealed by molecular dynamics simulations.
    Baron R; McCammon JA
    Biochemistry; 2007 Sep; 46(37):10629-42. PubMed ID: 17718514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the residues responsible for the alkaline inhibition of Cu,Zn superoxide dismutase: a site-directed mutagenesis approach.
    Polticelli F; Battistoni A; O'Neill P; Rotilio G; Desideri A
    Protein Sci; 1996 Feb; 5(2):248-53. PubMed ID: 8745402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of heme binding in the Cu,Zn superoxide dismutase from Haemophilus ducreyi.
    Töro I; Petrutz C; Pacello F; D'Orazio M; Battistoni A; Djinović-Carugo K
    J Mol Biol; 2009 Feb; 386(2):406-18. PubMed ID: 19103206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1H nuclear magnetic relaxation dispersion of Cu,Zn superoxide dismutase in the native and guanidinium-induced unfolded forms.
    Libralesso E; Nerinovski K; Parigi G; Turano P
    Biochem Biophys Res Commun; 2005 Mar; 328(2):633-9. PubMed ID: 15694395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential roles of Met10, Thr11, and Lys60 in structural dynamics of human copper chaperone Atox1.
    Rodriguez-Granillo A; Wittung-Stafshede P
    Biochemistry; 2009 Feb; 48(5):960-72. PubMed ID: 19146392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu,Zn superoxide dismutase in Rhodotorula and Udeniomyces spp. isolated from sea water: cloning and sequencing the encoding region.
    Hernández-Saavedra NY
    Yeast; 2003 Apr; 20(6):479-92. PubMed ID: 12722182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel superoxide dismutase structure and mechanism.
    Barondeau DP; Kassmann CJ; Bruns CK; Tainer JA; Getzoff ED
    Biochemistry; 2004 Jun; 43(25):8038-47. PubMed ID: 15209499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase: fluctuations in the structure and solvation of the active site channel studied by molecular dynamics simulation.
    Shen J; Subramaniam S; Wong CF; McCammon JA
    Biopolymers; 1989 Dec; 28(12):2085-96. PubMed ID: 2605312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional analysis of glycosylated Cu/Zn-superoxide dismutase from the fungal strain Humicola lutea 103.
    Dolashka-Angelova P; Stevanovic S; Dolashki A; Angelova M; Serkedjieva J; Krumova E; Pashova S; Zacharieva S; Voelter W
    Biochem Biophys Res Commun; 2004 May; 317(4):1006-16. PubMed ID: 15094369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.