These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 12002180)
1. Error analysis of tissue resistivity measurement. Tsai JZ; Will JA; Hubbard-Van Stelle S; Cao H; Tungjitkusolmun S; Choy YB; Haemmerich D; Vorperian VR; Webster JG IEEE Trans Biomed Eng; 2002 May; 49(5):484-94. PubMed ID: 12002180 [TBL] [Abstract][Full Text] [Related]
2. In-vivo measurement of swine myocardial resistivity. Tsai JZ; Will JA; Hubbard-Van Stelle S; Cao H; Tungjitkusolmun S; Choy YB; Haemmerich D; Vorperian VR; Webster JG IEEE Trans Biomed Eng; 2002 May; 49(5):472-83. PubMed ID: 12002179 [TBL] [Abstract][Full Text] [Related]
3. Dependence of apparent resistance of four-electrode probes on insertion depth. Tsai JZ; Cao H; Tungjitkusolmun S; Woo EJ; Vorperian VR; Webster JG IEEE Trans Biomed Eng; 2000 Jan; 47(1):41-8. PubMed ID: 10646278 [TBL] [Abstract][Full Text] [Related]
4. Study of the optimum level of electrode placement for the evaluation of absolute lung resistivity with the Mk3.5 EIT system. Nebuya S; Noshiro M; Yonemoto A; Tateno S; Brown BH; Smallwood RH; Milnes P Physiol Meas; 2006 May; 27(5):S129-37. PubMed ID: 16636404 [TBL] [Abstract][Full Text] [Related]
5. Calibrated single-plunge bipolar electrode array for mapping myocardial vector fields in three dimensions during high-voltage transthoracic defibrillation. Deale OC; Ng KT; Kim-Van Housen EJ; Lerman BB IEEE Trans Biomed Eng; 2001 Aug; 48(8):898-910. PubMed ID: 11499527 [TBL] [Abstract][Full Text] [Related]
6. Geometric effects on resistivity measurements with four-electrode probes in isotropic and anisotropic tissues. Wang Y; Schimpf PH; Haynor DR; Kim Y IEEE Trans Biomed Eng; 1998 Jul; 45(7):877-84. PubMed ID: 9644896 [TBL] [Abstract][Full Text] [Related]
7. Effects of sample geometry and electrode configuration on measured electrical resistivity of skeletal muscle. Kun S; Peura R IEEE Trans Biomed Eng; 2000 Feb; 47(2):163-9. PubMed ID: 10721623 [TBL] [Abstract][Full Text] [Related]
8. The four-electrode resistivity technique in anisotropic media: theoretical analysis and application on myocardial tissue in vivo. Steendijk P; Mur G; Van Der Velde ET; Baan J IEEE Trans Biomed Eng; 1993 Nov; 40(11):1138-48. PubMed ID: 8307598 [TBL] [Abstract][Full Text] [Related]
9. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit. Ahsan-Ul-Ambia ; Toda S; Takemae T; Kosugi Y; Hongo M IEEE Trans Biomed Eng; 2009 Feb; 56(2):400-6. PubMed ID: 19272885 [TBL] [Abstract][Full Text] [Related]
10. Electrode systems for measuring cardiac impedances using optical transmembrane potential sensors and interstitial electrodes--theoretical design. Barr RC; Plonsey R IEEE Trans Biomed Eng; 2003 Aug; 50(8):925-34. PubMed ID: 12892320 [TBL] [Abstract][Full Text] [Related]
11. A probe for organ impedance measurement. Paulson KS; Pidcock MK; McLeod CN IEEE Trans Biomed Eng; 2004 Oct; 51(10):1838-44. PubMed ID: 15490831 [TBL] [Abstract][Full Text] [Related]
12. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes. Gandhi SV; Walker DC; Brown BH; Anumba DO Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510 [TBL] [Abstract][Full Text] [Related]
13. Simplified calibration of single-plunge bipolar electrode array for field measurement during defibrillation. Deale OC; Ng KT; Kim-Van Housen EJ; Lerman BB IEEE Trans Biomed Eng; 2002 Oct; 49(10):1211-4. PubMed ID: 12374347 [TBL] [Abstract][Full Text] [Related]
14. In vitro measurement of myocardial impedivity anisotropy with a miniature rectangular tube. Tsai JZ; Will JA; Vorperian VR; Hubbard-van Stelle S; Cao H; Tungjitkusolmun S; Choy YB; Webster JG IEEE Trans Biomed Eng; 2003 Apr; 50(4):528-32. PubMed ID: 12723067 [TBL] [Abstract][Full Text] [Related]
15. Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. Cao H; Tungjitkusolmun S; Choy YB; Tsai JZ; Vorperian VR; Webster JG IEEE Trans Biomed Eng; 2002 Mar; 49(3):247-53. PubMed ID: 11876289 [TBL] [Abstract][Full Text] [Related]
16. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations. Johnston BM; Johnston PR; Kilpatrick D Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036 [TBL] [Abstract][Full Text] [Related]
17. Cell for measurements of biological tissue complex conductivity. Wtorek J; PoliƱski A; Stelter J; Nowakowski A Technol Health Care; 1998 Sep; 6(2-3):177-93. PubMed ID: 9839863 [TBL] [Abstract][Full Text] [Related]
18. Quantitative in vivo measurements of inner ear tissue resistivities: I. In vitro characterization. Suesserman MF; Spelman FA IEEE Trans Biomed Eng; 1993 Oct; 40(10):1032-47. PubMed ID: 8294128 [TBL] [Abstract][Full Text] [Related]
19. A comparison of techniques to optimize measurement of voltage changes in electrical impedance tomography by minimizing phase shift errors. Fitzgerald AJ; Holder DS; Eadie L; Hare C; Bayford RH IEEE Trans Med Imaging; 2002 Jun; 21(6):668-75. PubMed ID: 12166864 [TBL] [Abstract][Full Text] [Related]
20. A new geometric factor for in situ resistivity measurement using four slender cylindrical electrodes. Chong CE; Tan YL IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):594-602. PubMed ID: 18269995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]