These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12002694)

  • 1. How to explain established relationships between ion fluxes across cell membranes and Na,K-ATPase activities under the assumption that the Na,K-ATPase is no ion pump.
    Edelmann L
    Physiol Chem Phys Med NMR; 2001; 33(2):209-13. PubMed ID: 12002694
    [No Abstract]   [Full Text] [Related]  

  • 2. The cell biology of ion pumps: sorting and regulation.
    Dunbar LA; Caplan MJ
    Eur J Cell Biol; 2000 Aug; 79(8):557-63. PubMed ID: 11001492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three distinct and sequential steps in the release of sodium ions by the Na+/K+-ATPase.
    Holmgren M; Wagg J; Bezanilla F; Rakowski RF; De Weer P; Gadsby DC
    Nature; 2000 Feb; 403(6772):898-901. PubMed ID: 10706288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the sodium-potassium pump.
    Morth JP; Pedersen BP; Toustrup-Jensen MS; Sørensen TL; Petersen J; Andersen JP; Vilsen B; Nissen P
    Nature; 2007 Dec; 450(7172):1043-9. PubMed ID: 18075585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular control of cardiac sodium homeostasis in health and disease.
    Hilgemann DW; Yaradanakul A; Wang Y; Fuster D
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S47-S56. PubMed ID: 16686682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Long-term regulation of Na+, K+-ATPase pump in human lymphocytes: the role of JAK/STAT- and MAPK-signaling pathways].
    Karitskaia IA; Aksenov ND; Vasil'eva IO; Strelkova EG; Marakhova II
    Tsitologiia; 2008; 50(4):329-37. PubMed ID: 18664116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+-K+ pump stimulation improves contractility in damaged muscle fibers.
    Clausen T
    Ann N Y Acad Sci; 2005 Dec; 1066():286-94. PubMed ID: 16533932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for tryptophan residues in the cation transport path of the Na(+),K(+)-ATPase.
    Yudowski GA; Bar Shimon M; Tal DM; González-Lebrero RM; Rossi RC; Garrahan PJ; Beaugé LA; Karlish SJ
    Biochemistry; 2003 Sep; 42(34):10212-22. PubMed ID: 12939149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up?
    Panayiotidis MI; Bortner CD; Cidlowski JA
    Acta Physiol (Oxf); 2006; 187(1-2):205-15. PubMed ID: 16734757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na,K-ATPase in the nuclear envelope regulates Na+: K+ gradients in hepatocyte nuclei.
    Garner MH
    J Membr Biol; 2002 May; 187(2):97-115. PubMed ID: 12029368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of melittin on ion transport across cell membranes.
    Yang S; Carrasquer G
    Zhongguo Yao Li Xue Bao; 1997 Jan; 18(1):3-5. PubMed ID: 10072885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of SRC-family tyrosine kinases on Na,K-ATPase activity in lens epithelium.
    Bozulic LD; Dean WL; Delamere NA
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):618-22. PubMed ID: 15671290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel interactions of CLN3 protein link Batten disease to dysregulation of fodrin-Na+, K+ ATPase complex.
    Uusi-Rauva K; Luiro K; Tanhuanpää K; Kopra O; Martín-Vasallo P; Kyttälä A; Jalanko A
    Exp Cell Res; 2008 Sep; 314(15):2895-905. PubMed ID: 18621045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion permeation through the Na+,K+-ATPase.
    Reyes N; Gadsby DC
    Nature; 2006 Sep; 443(7110):470-4. PubMed ID: 17006516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of amphotericin B on ion transport proteins in airway epithelial cells.
    Jornot L; Rochat T; Caruso A; Lacroix JS
    J Cell Physiol; 2005 Sep; 204(3):859-70. PubMed ID: 15799030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of the NA/K pumps' turnover rates as a function of membrane potential, temperature, and ion concentration gradients and effect of fluctuations.
    Huang F; Rabson D; Chen W
    J Phys Chem B; 2009 Jun; 113(23):8096-102. PubMed ID: 19441863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nephron structure and immunohistochemical localization of ion pumps and aquaporins in the kidney of frogs inhabiting different environments.
    Uchiyama M; Yoshizawa H
    Symp Soc Exp Biol; 2002; (54):109-28. PubMed ID: 14992148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gill microsomal (Na+,K+)-ATPase from the blue crab Callinectes danae: Interactions at cationic sites.
    Masui DC; Furriel RP; Silva EC; Mantelatto FL; McNamara JC; Barrabin H; Scofano HM; Fontes CF; Leone FA
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2521-35. PubMed ID: 16055367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium or potassium ions activate different kinetics of gill Na, K-ATPase in three seawater- and freshwater-acclimated euryhaline teleosts.
    Lin CH; Lee TH
    J Exp Zool A Comp Exp Biol; 2005 Jan; 303(1):57-65. PubMed ID: 15612003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport energetics of the Na+ pump in Aplysia californica gut.
    Gerencser GA; Loo SY
    Can J Physiol Pharmacol; 2001 Sep; 79(9):822-4. PubMed ID: 11599784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.