These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12003014)

  • 1. Meteorological benefits from atmospheric nuclear tests.
    Machta L
    Health Phys; 2002 May; 82(5):635-43. PubMed ID: 12003014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Historical overview of atmospheric nuclear weapons testing and estimates of fallout in the continental United States.
    Beck HL; Bennett BG
    Health Phys; 2002 May; 82(5):591-608. PubMed ID: 12003011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of prompt and delayed atmospheric radioactivity releases from underground nuclear tests at Nevada as a function of release time.
    Kalinowski MB
    J Environ Radioact; 2011 Sep; 102(9):824-36. PubMed ID: 21684638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.
    Bennett BG
    Health Phys; 2002 May; 82(5):644-55. PubMed ID: 12003015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of meteorological and radiological data for selected fallout episodes.
    Quinn VE
    Health Phys; 1990 Nov; 59(5):577-92. PubMed ID: 2211117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An application of the NCRP screening techniques to atmospheric radon releases from the former feed materials production center near Fernald, Ohio. National Council on Radiation Protection and Measurements.
    Miller CW
    Health Phys; 1999 Nov; 77(5):545-55. PubMed ID: 10524509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model.
    Rolph GD; Ngan F; Draxler RR
    J Environ Radioact; 2014 Oct; 136():41-55. PubMed ID: 24878719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meteorological modeling of arrival and deposition of fallout at intermediate distances downwind of the Nevada Test Site.
    Cederwall RT; Peterson KR
    Health Phys; 1990 Nov; 59(5):593-601. PubMed ID: 2211118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of numerical models to predict the atmospheric dispersion of radionuclides.
    Leelőssy Á; Lagzi I; Kovács A; Mészáros R
    J Environ Radioact; 2018 Feb; 182():20-33. PubMed ID: 29179047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meteorological observations at Hiroshima on days with weather similar to that of the atomic bombing.
    Hoshi M; Sawada S; Nagatomo T; Neyama Y; Marumoto K; Kanemaru T
    Health Phys; 1992 Dec; 63(6):656-64. PubMed ID: 1428886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Danish emergency response model of the atmosphere (DERMA).
    Sørensen JH; Baklanov A; Hoe S
    J Environ Radioact; 2007; 96(1-3):122-9. PubMed ID: 17481784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean.
    Povinec PP; Gera M; Holý K; Hirose K; Lujaniené G; Nakano M; Plastino W; Sýkora I; Bartok J; Gažák M
    Appl Radiat Isot; 2013 Nov; 81():383-92. PubMed ID: 23746709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RADIATION LEVELS ABOARD COMMERCIAL JET AIRCRAFT RESULTING FROM ATMOSPHERIC NUCLEAR WEAPONS TESTS. NOVEMBER 1961-DECEMBER 1962.
    NELSON DJ; KINCAID CB; MIKKELSEN RL
    Radiol Health Data Rep; 1963 Jul; 4():373-81. PubMed ID: 14049790
    [No Abstract]   [Full Text] [Related]  

  • 14. Review of methods of dose estimation for epidemiological studies of the radiological impact of nevada test site and global fallout.
    Beck HL; Anspaugh LR; Bouville A; Simon SL
    Radiat Res; 2006 Jul; 166(1 Pt 2):209-18. PubMed ID: 16808609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic risk assessment for long-range atmospheric transport of radionuclides.
    Lauritzen B; Baklanov A; Mahura A; Mikkelsen T; Sørensen JH
    J Environ Radioact; 2007; 96(1-3):110-5. PubMed ID: 17482728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Duration of Meteorological Data Collection on the Prospective Assessment of Long-Term Atmospheric Dispersion Factors.
    Choi Y; Kim EH
    Radiat Prot Dosimetry; 2018 Apr; 179(1):69-79. PubMed ID: 29040769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors.
    Duo B; Cui L; Wang Z; Li R; Zhang L; Fu H; Chen J; Zhang H; Qiong A
    J Environ Sci (China); 2018 Jan; 63():28-42. PubMed ID: 29406111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meteorological modeling of radioiodine transport and deposition within the continental United States.
    Hoecker WH; Machta L
    Health Phys; 1990 Nov; 59(5):603-17. PubMed ID: 2211119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident.
    Saito K; Shimbori T; Draxler R
    J Environ Radioact; 2015 Jan; 139():185-199. PubMed ID: 24703334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models of radioiodine transport to populations within the continental U.S.
    Bouville A; Dreicer M; Beck HL; Hoecker WH; Wachholz BW
    Health Phys; 1990 Nov; 59(5):659-68. PubMed ID: 2145245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.