These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12003220)

  • 1. H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems.
    Torek PV; Hall DL; Miller TA; Wooldridge MS
    Appl Opt; 2002 Apr; 41(12):2274-84. PubMed ID: 12003220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].
    Zhang LF; Wang F; Yu LB; Yan JH; Cen KF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1639-42. PubMed ID: 26601382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction.
    Xu L; Liu C; Jing W; Cao Z; Xue X; Lin Y
    Rev Sci Instrum; 2016 Jan; 87(1):013101. PubMed ID: 26827303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diode-Laser Wavelength-Modulation Absorption Spectroscopy for Quantitative in situ Measurements of Temperature and OH Radical Concentration in Combustion Gases.
    Aizawa T
    Appl Opt; 2001 Sep; 40(27):4894-903. PubMed ID: 18360532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of OH radical concentration in combustion environments by wavelength-modulation spectroscopy with a 1.55-microm distributed-feedback diode laser.
    Aizawa T; Kamimoto T; Tamaru T
    Appl Opt; 1999 Mar; 38(9):1733-41. PubMed ID: 18305797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Measurement of NO, NO
    Li J; Li R; Liu Y; Li F; Lin X; Yu X; Shao W; Xu X
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.
    Qu Z; Steinvall E; Ghorbani R; Schmidt FM
    Anal Chem; 2016 Apr; 88(7):3754-60. PubMed ID: 26938713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values.
    Rhoby MR; Blunck DL; Gross KC
    Opt Express; 2014 Sep; 22(18):21600-17. PubMed ID: 25321539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and Thermal Diffusivity Diagnostics in Laminar Methane Flames Using Infrared Four-Wave Mixing Techniques.
    Song Z; Chao X; Sahlberg AL
    Appl Spectrosc; 2024 May; 78(5):538-550. PubMed ID: 38409815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of H
    Sang J; Zhou S; Zhang L; He T; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118383. PubMed ID: 32416512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single diode laser sensor for wide-range H2O temperature measurements.
    Gharavi M; Buckley SG
    Appl Spectrosc; 2004 Apr; 58(4):468-73. PubMed ID: 17140496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ combustion measurements of CO with diode-laser absorption near 2.3 microm.
    Wang J; Maiorov M; Baer DS; Garbuzov DZ; Connolly JC; Hanson RK
    Appl Opt; 2000 Oct; 39(30):5579-89. PubMed ID: 18354555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature measurements in a rapid compression machine using mid-infrared H2O absorption spectroscopy near 7.6 μm.
    Uddi M; Das AK; Sung CJ
    Appl Opt; 2012 Aug; 51(22):5464-76. PubMed ID: 22859037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies.
    Wang J; Chaos M; Yang B; Cool TA; Dryer FL; Kasper T; Hansen N; Osswald P; Kohse-Höinghaus K; Westmoreland PR
    Phys Chem Chem Phys; 2009 Mar; 11(9):1328-39. PubMed ID: 19224033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ measurements of H2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 microm.
    Durry G; Megie G
    Appl Opt; 2000 Oct; 39(30):5601-8. PubMed ID: 18354557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers.
    Karagiannopoulos S; Cheadle E; Wright P; Tsekenis S; McCann H
    Appl Opt; 2012 Dec; 51(34):8057-67. PubMed ID: 23207374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diode laser emission linewidth determination: application to H2O line profile studies in the 5 and 1.4 microm regions.
    Claveau C; Lepère M; Dufour G; Valentin A; Henry A; Camy-Peyret C; Hurtmans D
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Sep; 58(11):2313-21. PubMed ID: 12353681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Combustion Measurements of CO(2) by Use of a Distributed-Feedback Diode-Laser Sensor Near 2.0 mum.
    Webber ME; Kim S; Sanders ST; Baer DS; Hanson RK; Ikeda Y
    Appl Opt; 2001 Feb; 40(6):821-8. PubMed ID: 18357062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases.
    Li H; Rieker GB; Liu X; Jeffries JB; Hanson RK
    Appl Opt; 2006 Feb; 45(5):1052-61. PubMed ID: 16512549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Line Pair Selection on Flame Tomography Using Infrared Absorption Spectroscopy.
    Cheong KP; Ma L; Wang Z; Ren W
    Appl Spectrosc; 2019 May; 73(5):529-539. PubMed ID: 30394788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.