These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 12003226)
21. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Ashkin A Biophys J; 1992 Feb; 61(2):569-82. PubMed ID: 19431818 [TBL] [Abstract][Full Text] [Related]
22. Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams. Morris JE; Carruthers AE; Mazilu M; Reece PJ; Cizmar T; Fischer P; Dholakia K Opt Express; 2008 Jul; 16(14):10117-29. PubMed ID: 18607419 [TBL] [Abstract][Full Text] [Related]
23. Optical binding mechanisms: a conceptual model for Gaussian beam traps. Taylor JM; Love GD Opt Express; 2009 Aug; 17(17):15381-9. PubMed ID: 19688016 [TBL] [Abstract][Full Text] [Related]
24. Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric. Neves AA; Fontes A; Pozzo Lde Y; de Thomaz AA; Chillce E; Rodriguez E; Barbosa LC; Cesar CL Opt Express; 2006 Dec; 14(26):13101-6. PubMed ID: 19532206 [TBL] [Abstract][Full Text] [Related]
25. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Rohrbach A; Stelzer EH Appl Opt; 2002 May; 41(13):2494-507. PubMed ID: 12009161 [TBL] [Abstract][Full Text] [Related]
26. Revisit on dynamic radiation forces induced by pulsed Gaussian beams. Wang LG; Chai HS Opt Express; 2011 Jul; 19(15):14389-402. PubMed ID: 21934801 [TBL] [Abstract][Full Text] [Related]
27. Single beam optical trapping integrated in a confocal microscope for biological applications. Visscher K; Brakenhoff GJ Cytometry; 1991; 12(6):486-91. PubMed ID: 1764973 [TBL] [Abstract][Full Text] [Related]
28. Numerical study of the properties of optical vortex array laser tweezers. Kuo CF; Chu SC Opt Express; 2013 Nov; 21(22):26418-31. PubMed ID: 24216863 [TBL] [Abstract][Full Text] [Related]
29. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. Li M; Yan S; Yao B; Liang Y; Han G; Zhang P J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):1341-7. PubMed ID: 27409691 [TBL] [Abstract][Full Text] [Related]
31. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams. Mitri FG IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1835-44. PubMed ID: 26470046 [TBL] [Abstract][Full Text] [Related]
32. [Study on the separation of optical chromatography]. Wang H; Liu ZH; Ma LR; Gu JL; Fu RN Se Pu; 1999 Nov; 17(6):511-3. PubMed ID: 12552678 [TBL] [Abstract][Full Text] [Related]
33. Dynamic radiation force of a pulsed gaussian beam acting on rayleigh dielectric sphere. Wang LG; Zhao CL Opt Express; 2007 Aug; 15(17):10615-21. PubMed ID: 19547415 [TBL] [Abstract][Full Text] [Related]
34. Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Kalantarifard F; Elahi P; Makey G; Maragò OM; Ilday FÖ; Volpe G Nat Commun; 2019 Jun; 10(1):2683. PubMed ID: 31213600 [TBL] [Abstract][Full Text] [Related]
35. Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells. Agrawal M; Peumans P Opt Express; 2008 Apr; 16(8):5385-96. PubMed ID: 18542641 [TBL] [Abstract][Full Text] [Related]
36. Optimization of probe-laser focal offsets for single-particle tracking. Chang AT; Chang YR; Chi S; Hsu L Appl Opt; 2012 Aug; 51(23):5643-8. PubMed ID: 22885576 [TBL] [Abstract][Full Text] [Related]
37. Axial optical trapping efficiency through a dielectric interface. Neves AA; Fontes A; Cesar CL; Camposeo A; Cingolani R; Pisignano D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061917. PubMed ID: 18233879 [TBL] [Abstract][Full Text] [Related]
38. Trapping metallic particles using focused Bloch surface waves. Xiang Y; Tang X; Fu Y; Lu F; Kuai Y; Min C; Chen J; Wang P; Lakowicz JR; Yuan X; Zhang D Nanoscale; 2020 Jan; 12(3):1688-1696. PubMed ID: 31894803 [TBL] [Abstract][Full Text] [Related]
39. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers. Xu S; Li Y; Lou L Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076 [TBL] [Abstract][Full Text] [Related]
40. Focused plasmonic trapping of metallic particles. Min C; Shen Z; Shen J; Zhang Y; Fang H; Yuan G; Du L; Zhu S; Lei T; Yuan X Nat Commun; 2013; 4():2891. PubMed ID: 24305554 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]