These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12003226)

  • 41. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.
    Redding B; Pan YL
    Opt Lett; 2015 Jun; 40(12):2798-801. PubMed ID: 26076265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inversion of gradient forces for high refractive index particles in optical trapping.
    Ambrosio LA; Hernández-Figueroa HE
    Opt Express; 2010 Mar; 18(6):5802-8. PubMed ID: 20389597
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interference from multiple trapped colloids in an optical vortex beam.
    Lee WM; Garcés-Chávez V; Dholakia K
    Opt Express; 2006 Aug; 14(16):7436-46. PubMed ID: 19529110
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of immersion oil in optical tweezers.
    Mahmoudi A; Reihani SN
    Opt Express; 2011 Aug; 19(16):14794-800. PubMed ID: 21934840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Significant enhancement of broadband optical limiting behavior using off-resonant sub-wavelength coupled plasmonic waves.
    Tai CY; Chang SH; Chiu T
    Opt Express; 2008 Sep; 16(19):14979-86. PubMed ID: 18795034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative study of conservative gradient force and non-conservative scattering force exerted on a spherical particle in optical tweezers.
    Li X; Zheng H; Yuen CH; Du J; Chen J; Lin Z; Ng J
    Opt Express; 2021 Aug; 29(16):25377-25387. PubMed ID: 34614870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing.
    Mitri FG; Fellah ZE
    Ultrasonics; 2014 Jan; 54(1):351-7. PubMed ID: 23683798
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap.
    Steubing RW; Cheng S; Wright WH; Numajiri Y; Berns MW
    Cytometry; 1991; 12(6):505-10. PubMed ID: 1764975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of Mie resonances on trapping in optical tweezers.
    Stilgoe AB; Nieminen TA; Knöener G; Heckenberg NR; Rubinsztein-Dunlop H
    Opt Express; 2008 Sep; 16(19):15039-51. PubMed ID: 18795041
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced transverse optical gradient force on Rayleigh particles in two plane waves.
    Zhang Y; Xiu Z; Fan X; Li R; Chen H; Zheng H; Lu W; Lin Z
    Opt Express; 2022 Jan; 30(2):2143-2155. PubMed ID: 35209361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.
    Shane JC; Mazilu M; Lee WM; Dholakia K
    Opt Express; 2010 Mar; 18(7):7554-68. PubMed ID: 20389777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam.
    Li ZJ; Wu ZS; Shang QC
    Opt Express; 2011 Aug; 19(17):16044-57. PubMed ID: 21934968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon-assisted optical trapping and anti-trapping.
    Ivinskaya A; Petrov MI; Bogdanov AA; Shishkin I; Ginzburg P; Shalin AS
    Light Sci Appl; 2017 May; 6(5):e16258. PubMed ID: 30167251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compliance of bacterial flagella measured with optical tweezers.
    Block SM; Blair DF; Berg HC
    Nature; 1989 Apr; 338(6215):514-8. PubMed ID: 2648159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancement of trapping efficiency by utilizing a hollow sinh-Gaussian beam.
    Liu Z; Wang X; Hang K
    Sci Rep; 2019 Jul; 9(1):10187. PubMed ID: 31308461
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The study of cells by optical trapping and manipulation of living cells using infrared laser beams.
    Ashkin A
    ASGSB Bull; 1991 Jul; 4(2):133-46. PubMed ID: 11537176
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination.
    Han Y; Gréhan G; Gouesbet G
    Appl Opt; 2003 Nov; 42(33):6621-9. PubMed ID: 14658463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Custom-Made Microspheres for Optical Tweezers.
    Jannasch A; Abdosamadi MK; Ramaiya A; De S; Ferro V; Sonnberger A; Schäffer E
    Methods Mol Biol; 2017; 1486():137-155. PubMed ID: 27844428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams.
    Shu J; Chen Z; Pu J
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):916-22. PubMed ID: 23695323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical trapping and manipulation of nano-objects with an apertureless probe.
    Chaumet PC; Rahmani A; Nieto-Vesperinas M
    Phys Rev Lett; 2002 Mar; 88(12):123601. PubMed ID: 11909460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.