These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12003826)

  • 1. Constitutive properties of hypertrophied myocardium: cellular contribution to changes in myocardial stiffness.
    Harris TS; Baicu CF; Conrad CH; Koide M; Buckley JM; Barnes M; Cooper G; Zile MR
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2173-82. PubMed ID: 12003826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells.
    Kato S; Koide M; Cooper G; Zile MR
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2575-83. PubMed ID: 8997318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive properties of adult mammalian cardiac muscle cells.
    Zile MR; Richardson K; Cowles MK; Buckley JM; Koide M; Cowles BA; Gharpuray V; Cooper G
    Circulation; 1998 Aug; 98(6):567-79. PubMed ID: 9714115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy.
    Tagawa H; Wang N; Narishige T; Ingber DE; Zile MR; Cooper G
    Circ Res; 1997 Feb; 80(2):281-9. PubMed ID: 9012750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells.
    Zile MR; Cowles MK; Buckley JM; Richardson K; Cowles BA; Baicu CF; Cooper G IV; Gharpuray V
    Am J Physiol; 1998 Jun; 274(6 Pt 2):H2188-202. PubMed ID: 9841544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of pressure overload hypertrophied myocardium: effect of serine protease treatment.
    Stroud JD; Baicu CF; Barnes MA; Spinale FG; Zile MR
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2324-35. PubMed ID: 12003843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular versus myocardial basis for the contractile dysfunction of hypertrophied myocardium.
    Mann DL; Urabe Y; Kent RL; Vinciguerra S; Cooper G
    Circ Res; 1991 Feb; 68(2):402-15. PubMed ID: 1825035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiocyte contractile performance in experimental biventricular volume-overload hypertrophy.
    Urabe Y; Hamada Y; Spinale FG; Carabello BA; Kent RL; Cooper G; Mann DL
    Am J Physiol; 1993 May; 264(5 Pt 2):H1615-23. PubMed ID: 8498574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of microtubules in the contractile dysfunction of hypertrophied myocardium.
    Zile MR; Koide M; Sato H; Ishiguro Y; Conrad CH; Buckley JM; Morgan JP; Cooper G
    J Am Coll Cardiol; 1999 Jan; 33(1):250-60. PubMed ID: 9935038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes.
    Tsutsui H; Tagawa H; Kent RL; McCollam PL; Ishihara K; Nagatsu M; Cooper G
    Circulation; 1994 Jul; 90(1):533-55. PubMed ID: 8026043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubules Increase Diastolic Stiffness in Failing Human Cardiomyocytes and Myocardium.
    Caporizzo MA; Chen CY; Bedi K; Margulies KB; Prosser BL
    Circulation; 2020 Mar; 141(11):902-915. PubMed ID: 31941365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basis for increased microtubules in pressure-hypertrophied cardiocytes.
    Tagawa H; Rozich JD; Tsutsui H; Narishige T; Kuppuswamy D; Sato H; McDermott PJ; Koide M; Cooper G
    Circulation; 1996 Mar; 93(6):1230-43. PubMed ID: 8653846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of microtubules in the viscoelastic properties of isolated cardiac muscle.
    Yamamoto S; Tsutsui H; Takahashi M; Ishibashi Y; Tagawa H; Imanaka-Yoshida K; Saeki Y; Takeshita A
    J Mol Cell Cardiol; 1998 Sep; 30(9):1841-53. PubMed ID: 9769239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading.
    Tagawa H; Koide M; Sato H; Zile MR; Carabello BA; Cooper G
    Circ Res; 1998 Apr; 82(7):751-61. PubMed ID: 9562434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy.
    Koide M; Hamawaki M; Narishige T; Sato H; Nemoto S; DeFreyte G; Zile MR; Cooper G IV; Carabello BA
    Circulation; 2000 Aug; 102(9):1045-52. PubMed ID: 10961971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium.
    Tsutsui H; Ishihara K; Cooper G
    Science; 1993 Apr; 260(5108):682-7. PubMed ID: 8097594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile function of isolated feline cardiocytes in response to viscous loading.
    Kent RL; Mann DL; Urabe Y; Hisano R; Hewett KW; Loughnane M; Cooper G
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1717-27. PubMed ID: 2589523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubules are involved in early hypertrophic responses of myocardium during pressure overload.
    Takahashi M; Tsutsui H; Tagawa H; Igarashi-Saito K; Imanaka-Yoshida K; Takeshita A
    Am J Physiol; 1998 Aug; 275(2):H341-8. PubMed ID: 9683419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of anisosmotic stress on cardiac muscle cell length, diameter, area, and sarcomere length.
    Tanaka R; Barnes MA; Cooper G; Zile MR
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1414-22. PubMed ID: 8967384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive stiffness of pressure-induced hypertrophied cat myocardium.
    Williams JF; Potter RD
    Circ Res; 1981 Jul; 49(1):211-5. PubMed ID: 6453671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.