BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12004827)

  • 1. Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado.
    Eusden JD; Gallagher L; Eighmy TT; Crannell BS; Krzanowski JR; Butler LG; Cartledge FK; Emery EF; Shaw EL; Francis CA
    Waste Manag; 2002; 22(2):117-35. PubMed ID: 12004827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling.
    Othmani MA; Souissi F; Bouzahzah H; Bussière B; da Silva EF; Benzaazoua M
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2877-90. PubMed ID: 25220771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China.
    Sun Z; Xie X; Wang P; Hu Y; Cheng H
    Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical distribution and mobility of arsenic and heavy metals in and around mine tailings of an abandoned mine.
    Kim MJ; Jung Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(1):203-22. PubMed ID: 15030152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sewage sludge application on heavy metal leaching from mine tailings impoundments.
    Andrés NF; Francisco MS
    Bioresour Technol; 2008 Nov; 99(16):7521-30. PubMed ID: 18372173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings.
    Saavedra-Mella F; Liu Y; Southam G; Huang L
    Environ Pollut; 2019 Jul; 250():676-685. PubMed ID: 31035150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China.
    Zhao H; Xia B; Qin J; Zhang J
    J Environ Sci (China); 2012; 24(6):979-89. PubMed ID: 23505864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of naturally aged cement-solidified MSWI fly ash.
    Du B; Li J; Fang W; Liu Y; Yu S; Li Y; Liu J
    Waste Manag; 2018 Oct; 80():101-111. PubMed ID: 30454989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of leachates from dolomitic mine tailings.
    Harwood JJ; Koirtyohann SR
    Environ Geochem Health; 1987 Mar; 9(1):17-22. PubMed ID: 24214146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization.
    Du YJ; Wei ML; Reddy KR; Jin F; Wu HL; Liu ZB
    J Environ Manage; 2014 Dec; 146():179-188. PubMed ID: 25173726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of metal mobility from copper mine tailings in northern Chile.
    Lam EJ; Gálvez ME; Cánovas M; Montofré IL; Rivero D; Faz A
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11901-15. PubMed ID: 26957432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal).
    Durães N; Bobos I; da Silva EF
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4562-4576. PubMed ID: 27957691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination?
    Queiroz HM; Nóbrega GN; Ferreira TO; Almeida LS; Romero TB; Santaella ST; Bernardino AF; Otero XL
    Sci Total Environ; 2018 Oct; 637-638():498-506. PubMed ID: 29754084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings.
    Roussel C; Néel C; Bril H
    Sci Total Environ; 2000 Dec; 263(1-3):209-19. PubMed ID: 11194154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cottongrass effects on trace elements in submersed mine tailings.
    Stoltz E; Greger M
    J Environ Qual; 2002; 31(5):1477-83. PubMed ID: 12371164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.
    Liu T; Li F; Jin Z; Yang Y
    Environ Pollut; 2018 Jul; 238():359-368. PubMed ID: 29574360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.