BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12005074)

  • 1. Luteolin, a flavone, does not suppress postprandial glucose absorption through an inhibition of alpha-glucosidase action.
    Matsui T; Kobayashi M; Hayashida S; Matsumoto K
    Biosci Biotechnol Biochem; 2002 Mar; 66(3):689-92. PubMed ID: 12005074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. alpha-Glucosidase inhibitory profile of catechins and theaflavins.
    Matsui T; Tanaka T; Tamura S; Toshima A; Tamaya K; Miyata Y; Tanaka K; Matsumoto K
    J Agric Food Chem; 2007 Jan; 55(1):99-105. PubMed ID: 17199319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid.
    Kim JS; Kwon CS; Son KH
    Biosci Biotechnol Biochem; 2000 Nov; 64(11):2458-61. PubMed ID: 11193416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose.
    Zhang BW; Li X; Sun WL; Xing Y; Xiu ZL; Zhuang CL; Dong YS
    J Agric Food Chem; 2017 Sep; 65(38):8319-8330. PubMed ID: 28875706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of α-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb.
    Sheliya MA; Rayhana B; Ali A; Pillai KK; Aeri V; Sharma M; Mir SR
    J Ethnopharmacol; 2015 Dec; 176():1-8. PubMed ID: 26477374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Inhibitory action of berberine on glucose absorption].
    Pan GY; Wang GJ; Sun JG; Huang ZJ; Zhao XC; Gu Y; Liu XD
    Yao Xue Xue Bao; 2003 Dec; 38(12):911-4. PubMed ID: 15040083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naringenin inhibits α-glucosidase activity: a promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats.
    Priscilla DH; Roy D; Suresh A; Kumar V; Thirumurugan K
    Chem Biol Interact; 2014 Mar; 210():77-85. PubMed ID: 24412302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking.
    Yan J; Zhang G; Pan J; Wang Y
    Int J Biol Macromol; 2014 Mar; 64():213-23. PubMed ID: 24333230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats.
    de la Garza AL; Etxeberria U; Lostao MP; San Román B; Barrenetxe J; Martínez JA; Milagro FI
    J Agric Food Chem; 2013 Dec; 61(49):12012-9. PubMed ID: 24261475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha-Glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which, Cassia auriculata, exerts a strong antihyperglycemic effect in rats comparable to the therapeutic drug acarbose.
    Abesundara KJ; Matsui T; Matsumoto K
    J Agric Food Chem; 2004 May; 52(9):2541-5. PubMed ID: 15113153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triterpene glycosides of Siraitia grosvenori inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats.
    Suzuki YA; Murata Y; Inui H; Sugiura M; Nakano Y
    J Agric Food Chem; 2005 Apr; 53(8):2941-6. PubMed ID: 15826043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of CuSO₄ on α-glucosidase activity in ddY mice.
    Yoshikawa Y; Hirata R; Yasui H; Hattori M; Sakurai H
    Metallomics; 2010 Jan; 2(1):67-73. PubMed ID: 21072376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo antihyperglycemic effect of 2 amadori rearrangement compounds, arginyl-fructose and arginyl-fructosyl-glucose.
    Ha KS; Jo SH; Kang BH; Apostolidis E; Lee MS; Jang HD; Kwon YI
    J Food Sci; 2011 Oct; 76(8):H188-93. PubMed ID: 22417590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Berberine acutely inhibits the digestion of maltose in the intestine.
    Li ZQ; Zuo DY; Qie XD; Qi H; Zhao MQ; Wu YL
    J Ethnopharmacol; 2012 Jul; 142(2):474-80. PubMed ID: 22626925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effects of pasuchaca (Geranium dielsiaum) extract on alpha-glucosidase in mouse.
    Karato M; Yamaguchi K; Takei S; Kino T; Yazawa K
    Biosci Biotechnol Biochem; 2006 Jun; 70(6):1482-4. PubMed ID: 16794329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoglycemic effect of 13-membered ring thiocyclitol, a novel alpha-glucosidase inhibitor from Kothala-himbutu (Salacia reticulata).
    Oe H; Ozaki S
    Biosci Biotechnol Biochem; 2008 Jul; 72(7):1962-4. PubMed ID: 18603797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents.
    Mohan S; Eskandari R; Pinto BM
    Acc Chem Res; 2014 Jan; 47(1):211-25. PubMed ID: 23964564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thielavins A, J and K: α-Glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora.
    Rivera-Chávez J; González-Andrade M; González Mdel C; Glenn AE; Mata R
    Phytochemistry; 2013 Oct; 94():198-205. PubMed ID: 23809634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of 1,5-anhydroglucitol on postprandial blood glucose and insulin levels and hydrogen excretion in rats and healthy humans.
    Nakamura S; Tanabe K; Yoshinaga K; Shimura F; Oku T
    Br J Nutr; 2017 Jul; 118(2):81-91. PubMed ID: 28820081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and α-glucosidase inhibitory activity evaluation of N-substituted aminomethyl-β-d-glucopyranosides.
    Bian X; Fan X; Ke C; Luan Y; Zhao G; Zeng A
    Bioorg Med Chem; 2013 Sep; 21(17):5442-50. PubMed ID: 23810673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.