BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12005430)

  • 1. Structure and dynamics of the anticodon arm binding domain of Bacillus stearothermophilus Tyrosyl-tRNA synthetase.
    Guijarro JI; Pintar A; Prochnicka-Chalufour A; Guez V; Gilquin B; Bedouelle H; Delepierre M
    Structure; 2002 Mar; 10(3):311-7. PubMed ID: 12005430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure of the C-terminal domain of the tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus: a novel type of anticodon binding domain?
    Pintar A; Guez V; Castagné C; Bedouelle H; Delepierre M
    FEBS Lett; 1999 Mar; 446(1):81-5. PubMed ID: 10100619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
    Doublié S; Bricogne G; Gilmore C; Carter CW
    Structure; 1995 Jan; 3(1):17-31. PubMed ID: 7743129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disordered C-terminal domain of tyrosyl-tRNA synthetase: secondary structure prediction.
    Jermutus L; Guez V; Bedouelle H
    Biochimie; 1999 Mar; 81(3):235-44. PubMed ID: 10385005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between transfer-RNAs by tyrosyl-tRNA synthetase.
    Bedouelle H; Guez-Ivanier V; Nageotte R
    Biochimie; 1993; 75(12):1099-108. PubMed ID: 8199245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific tRNA recognition in relation to tRNA synthetase contact residues.
    Nair S; Ribas de Pouplana L; Houman F; Avruch A; Shen X; Schimmel P
    J Mol Biol; 1997 May; 269(1):1-9. PubMed ID: 9192996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An essential residue in the flexible peptide linking the two idiosynchratic domains of bacterial tyrosyl-tRNA synthetases.
    Gaillard C; Bedouelle H
    Biochemistry; 2001 Jun; 40(24):7192-9. PubMed ID: 11401566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of synthetase/transfer RNA interaction as deduced by protein engineering.
    Bedouelle H; Winter G
    Nature; 1986 Mar 27-Apr 2; 320(6060):371-3. PubMed ID: 3960121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disordered C-terminal domain of tyrosyl transfer-RNA synthetase: evidence for a folded state.
    Guez-Ivanier V; Bedouelle H
    J Mol Biol; 1996 Jan; 255(1):110-20. PubMed ID: 8568859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a human aminoacyl-tRNA synthetase cytokine.
    Yang XL; Skene RJ; McRee DE; Schimmel P
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15369-74. PubMed ID: 12427973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved amino acids near the carboxy terminus of bacterial tyrosyl-tRNA synthetase are involved in tRNA and Tyr-AMP binding.
    Salazar JC; Zuñiga R; Lefimil C; Söll D; Orellana O
    FEBS Lett; 2001 Mar; 491(3):257-60. PubMed ID: 11240138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anticodon-binding domain of tyrosyl-tRNA synthetase: state of folding and origin of the crystallographic disorder.
    Guez V; Nair S; Chaffotte A; Bedouelle H
    Biochemistry; 2000 Feb; 39(7):1739-47. PubMed ID: 10677223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system.
    Karimova G; Ullmann A; Ladant D
    J Mol Microbiol Biotechnol; 2001 Jan; 3(1):73-82. PubMed ID: 11200232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evolution of a dense cluster of residues in tyrosyl-tRNA synthetase: quantitative effects on activity, stability and dimerization.
    Park YC; Guez V; Bedouelle H
    J Mol Biol; 1999 Feb; 286(2):563-77. PubMed ID: 9973571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine.
    Sheoran A; Sharma G; First EA
    J Biol Chem; 2008 May; 283(19):12960-70. PubMed ID: 18319247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal fragment of Acanthamoeba polyphaga mimivirus tyrosyl-tRNA synthetase (TyrRS(apm)) is a monomer in solution.
    Choudhury A; Banerjee R
    FEBS Lett; 2013 Mar; 587(6):590-9. PubMed ID: 23384724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.
    Richardson CJ; First EA
    Biochemistry; 2016 Mar; 55(10):1541-53. PubMed ID: 26890980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase.
    Sharma G; First EA
    J Biol Chem; 2009 Feb; 284(7):4179-90. PubMed ID: 19098308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition.
    Yaremchuk A; Kriklivyi I; Tukalo M; Cusack S
    EMBO J; 2002 Jul; 21(14):3829-40. PubMed ID: 12110594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.