These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12005513)

  • 1. Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact.
    Tuominen J; Kylmä J; Kapanen A; Venelampi O; Itävaara M; Seppälä J
    Biomacromolecules; 2002; 3(3):445-55. PubMed ID: 12005513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability evaluation of polymers by ISO 14855-2.
    Funabashi M; Ninomiya F; Kunioka M
    Int J Mol Sci; 2009 Aug; 10(8):3635-3654. PubMed ID: 20111676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of plastics.
    Shimao M
    Curr Opin Biotechnol; 2001 Jun; 12(3):242-7. PubMed ID: 11404101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory composting of extruded poly(lactic acid) sheets.
    Ghorpade VM; Gennadios A; Hanna MA
    Bioresour Technol; 2001 Jan; 76(1):57-61. PubMed ID: 11315811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)--thermodynamics of micellization and hydrolytic degradation.
    Loh XJ; Tan YX; Li Z; Teo LS; Goh SH; Li J
    Biomaterials; 2008 May; 29(14):2164-72. PubMed ID: 18276002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt Viscoelastic Assessment of Poly(Lactic Acid) Composting: Influence of UV Ageing.
    Verney V; Ramoné A; Delor-Jestin F; Commereuc S; Koutny M; Perchet G; Troquet J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30340360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory composting of extruded starch acetate and poly lactic acid blended foams.
    Ganjyal GM; Weber R; Hanna MA
    Bioresour Technol; 2007 Nov; 98(16):3176-9. PubMed ID: 17222552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions.
    Itävaara M; Karjomaa S; Selin JF
    Chemosphere; 2002 Feb; 46(6):879-85. PubMed ID: 11922068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber.
    Ahn HK; Huda MS; Smith MC; Mulbry W; Schmidt WF; Reeves JB
    Bioresour Technol; 2011 Apr; 102(7):4930-3. PubMed ID: 21320772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained drug release characteristics of biodegradable composite poly(d,l)lactic acid-poly(l)lactic acid microcapsules containing ciprofloxacin.
    Yu WP; Wong JP; Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 2000 Jan; 28(1):39-55. PubMed ID: 10676576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-biomaterial interactions: effect of biosystems on degradation of polyurethanes.
    Santerre JP; Labow RS; Adams GA
    J Biomed Mater Res; 1993 Jan; 27(1):97-109. PubMed ID: 8421004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compostability assessment of nano-reinforced poly(lactic acid) films.
    Balaguer MP; Aliaga C; Fito C; Hortal M
    Waste Manag; 2016 Feb; 48():143-155. PubMed ID: 26589869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.
    Fonseca AC; Coelho JF; Valente JF; Correia TR; Correia IJ; Gil MH; Simões PN
    J Biomater Sci Polym Ed; 2013; 24(12):1391-409. PubMed ID: 23829454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of iron monocarboxylates in the two-step preparation of poly(ester-urethane)s.
    Stolt M; Hiltunen K; Södergård A
    Biomacromolecules; 2001; 2(4):1243-8. PubMed ID: 11777398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.