These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12005727)

  • 1. Pattern formation in flowing electrorheological fluids.
    von Pfeil K; Graham MD; Klingenberg DJ; Morris JF
    Phys Rev Lett; 2002 May; 88(18):188301. PubMed ID: 12005727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-osmosis of electrorheological fluids.
    Dhar J; Bandopadhyay A; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053001. PubMed ID: 24329345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static yield stress of a magnetorheological fluid containing Pickering emulsion polymerized Fe2O3/polystyrene composite particles.
    Seo YP; Kwak S; Choi HJ; Seo Y
    J Colloid Interface Sci; 2016 Feb; 463():272-8. PubMed ID: 26550785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorheological fluids.
    Halsey TC
    Science; 1992 Oct; 258(5083):761-6. PubMed ID: 17777027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.
    Dhar J; Ghosh U; Chakraborty S
    Soft Matter; 2015 Sep; 11(35):6957-67. PubMed ID: 26235842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static shear modulus of electrorheological fluids.
    Shi L; Tam WY; Huang X; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051501. PubMed ID: 16802937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and analysis of electrorheological suspensions in shear flow.
    Seo YP; Seo Y
    Langmuir; 2012 Feb; 28(6):3077-84. PubMed ID: 22233263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient filamentous network structure of a colloidal suspension excited by stepwise electric fields.
    Tian Y; Zeng H; Anderson TH; Zhao B; McGuiggan P; Israelachvili J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011409. PubMed ID: 17358152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Electrode Pattern on the Column Structure and Yield Stress of Electrorheological Fluids.
    Otsubo Y
    J Colloid Interface Sci; 1997 Jun; 190(2):466-71. PubMed ID: 9241191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field.
    Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear-induced particle rotation and its effect on electrorheological and dielectric properties in cellulose suspension.
    Misono Y; Negita K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061412. PubMed ID: 15697367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of particle size on shear behavior of amine-group-immobilized polyacrylonitrile dispersed suspension under electric field.
    Ko YG; Choi US; Chun YJ
    J Colloid Interface Sci; 2009 Jul; 335(2):183-8. PubMed ID: 19409572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized yield stress equation for electrorheological fluids.
    Zhang K; Liu YD; Jhon MS; Choi HJ
    J Colloid Interface Sci; 2013 Nov; 409():259-63. PubMed ID: 23993784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.