These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
707 related articles for article (PubMed ID: 12005759)
1. Permutation entropy: a natural complexity measure for time series. Bandt C; Pompe B Phys Rev Lett; 2002 Apr; 88(17):174102. PubMed ID: 12005759 [TBL] [Abstract][Full Text] [Related]
2. A Novel Measure Inspired by Lyapunov Exponents for the Characterization of Dynamics in State-Transition Networks. Sándor B; Schneider B; Lázár ZI; Ercsey-Ravasz M Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33445685 [TBL] [Abstract][Full Text] [Related]
3. Dynamical complexity detection in short-term physiological series using base-scale entropy. Li J; Ning X Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):052902. PubMed ID: 16802980 [TBL] [Abstract][Full Text] [Related]
4. Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Diab A; Hassan M; Marque C; Karlsson B Med Eng Phys; 2014 Jun; 36(6):761-7. PubMed ID: 24593872 [TBL] [Abstract][Full Text] [Related]
5. Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Fadlallah B; Chen B; Keil A; Príncipe J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022911. PubMed ID: 23496595 [TBL] [Abstract][Full Text] [Related]
6. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Toomey JP; Kane DM Opt Express; 2014 Jan; 22(2):1713-25. PubMed ID: 24515178 [TBL] [Abstract][Full Text] [Related]
7. Modified permutation-entropy analysis of heartbeat dynamics. Bian C; Qin C; Ma QD; Shen Q Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021906. PubMed ID: 22463243 [TBL] [Abstract][Full Text] [Related]
8. Permutation-information-theory approach to unveil delay dynamics from time-series analysis. Zunino L; Soriano MC; Fischer I; Rosso OA; Mirasso CR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046212. PubMed ID: 21230370 [TBL] [Abstract][Full Text] [Related]
9. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods. Almendral JA; Leyva I; Sendiña-Nadal I Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510026 [TBL] [Abstract][Full Text] [Related]
10. Finite-time Lyapunov exponents in time-delayed nonlinear dynamical systems. Kanno K; Uchida A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032918. PubMed ID: 24730924 [TBL] [Abstract][Full Text] [Related]
11. Complexity in pulsed nonlinear laser systems interrogated by permutation entropy. Toomey JP; Kane DM; Ackemann T Opt Express; 2014 Jul; 22(15):17840-53. PubMed ID: 25089405 [TBL] [Abstract][Full Text] [Related]
12. The identification of critical fluctuations and phase transitions in short term and coarse-grained time series-a method for the real-time monitoring of human change processes. Schiepek G; Strunk G Biol Cybern; 2010 Mar; 102(3):197-207. PubMed ID: 20084517 [TBL] [Abstract][Full Text] [Related]
13. Complex dynamics in simple Hopfield neural networks. Yang XS; Huang Y Chaos; 2006 Sep; 16(3):033114. PubMed ID: 17014219 [TBL] [Abstract][Full Text] [Related]
14. Ordinal patterns in the Duffing oscillator: Analyzing powers of characterization. Gunther I; Pattanayak AK; Aragoneses A Chaos; 2021 Feb; 31(2):023104. PubMed ID: 33653071 [TBL] [Abstract][Full Text] [Related]
15. Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures. Lai YC; Harrison MA; Frei MG; Osorio I Chaos; 2004 Sep; 14(3):630-42. PubMed ID: 15446973 [TBL] [Abstract][Full Text] [Related]
16. Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators. Ryabov VB Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016214. PubMed ID: 12241468 [TBL] [Abstract][Full Text] [Related]
17. [Nonlinear dynamical complexity analysis of short-term heartbeat series using joint entropy]. Li J; Ning X; Ma O Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):285-9. PubMed ID: 17591243 [TBL] [Abstract][Full Text] [Related]
18. Inhomogeneous point-process entropy: an instantaneous measure of complexity in discrete systems. Valenza G; Citi L; Scilingo EP; Barbieri R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052803. PubMed ID: 25353840 [TBL] [Abstract][Full Text] [Related]
19. Characterization of nonstationary chaotic systems. Serquina R; Lai YC; Chen Q Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026208. PubMed ID: 18352104 [TBL] [Abstract][Full Text] [Related]
20. Generalized permutation entropy analysis based on the two-index entropic form Sq,δ. Xu M; Shang P Chaos; 2015 May; 25(5):053114. PubMed ID: 26026326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]