These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 12005831)

  • 21. Excluded volume in the generic van der Waals equation of state and the self-diffusion coefficient of the Lennard-Jones fluid.
    Laghaei R; Eskandari Nasrabad A; Chan Eu B
    J Chem Phys; 2006 Apr; 124(15):154502. PubMed ID: 16674237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Criticality of a liquid-vapor interface from an inhomogeneous integral equation theory.
    Omelyan I; Hirata F; Kovalenko A
    Phys Chem Chem Phys; 2005 Dec; 7(24):4132-7. PubMed ID: 16474878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A perturbation method for the Ornstein-Zernike equation and the generic van der Waals equation of state for a square well potential model.
    Eu BC; Qin Y
    J Phys Chem B; 2007 Apr; 111(14):3716-26. PubMed ID: 17388524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An equation of state for Stockmayer fluids based on a perturbation theory for dipolar hard spheres.
    Theiss M; van Westen T; Gross J
    J Chem Phys; 2019 Sep; 151(10):104102. PubMed ID: 31521101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density functional theory of inhomogeneous liquids. III. Liquid-vapor nucleation.
    Lutsko JF
    J Chem Phys; 2008 Dec; 129(24):244501. PubMed ID: 19123511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling inhomogeneous van der Waals fluids using an analytical direct correlation function.
    Tang Y; Wu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011201. PubMed ID: 15324042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range.
    Gloor GJ; Jackson G; Blas FJ; Del Río EM; de Miguel E
    J Chem Phys; 2004 Dec; 121(24):12740-59. PubMed ID: 15606300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.
    Fischer NM; van Maaren PJ; Ditz JC; Yildirim A; van der Spoel D
    J Chem Theory Comput; 2015 Jul; 11(7):2938-44. PubMed ID: 26575731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid density profile transitions and symmetry breaking in a closed nanoslit.
    Berim GO; Ruckenstein E
    J Phys Chem B; 2007 Mar; 111(10):2514-22. PubMed ID: 17315911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generalized coupling parameter expansion: application to square well and Lennard-Jones fluids.
    Sai Venkata Ramana A
    J Chem Phys; 2013 Jul; 139(4):044106. PubMed ID: 23901959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal properties of the metastable supersaturated vapor of the Lennard-Jones fluid.
    Linhart A; Chen CC; Vrabec J; Hasse H
    J Chem Phys; 2005 Apr; 122(14):144506. PubMed ID: 15847544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local density dependent potentials for an underlying van der Waals equation of state: A simulation and density functional theory analysis.
    O'Connor JPD; Cook JL; Stott IP; Masters AJ; Avendaño C
    J Chem Phys; 2023 Nov; 159(19):. PubMed ID: 37982487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR).
    Forte E; Llovell F; Vega LF; Trusler JP; Galindo A
    J Chem Phys; 2011 Apr; 134(15):154102. PubMed ID: 21513370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids.
    Ghobadi AF; Elliott JR
    J Chem Phys; 2013 Dec; 139(23):234104. PubMed ID: 24359349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid-vapor equilibrium and surface tension of nonconformal molecular fluids.
    Del Río F; Díaz-Herrera E; Avalos E; Alejandre J
    J Chem Phys; 2005 Jan; 122(3):34504. PubMed ID: 15740206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic properties of Lennard-Jones chain molecules: renormalization-group corrections to a modified statistical associating fluid theory.
    Llovell F; Pàmies JC; Vega LF
    J Chem Phys; 2004 Dec; 121(21):10715-24. PubMed ID: 15549957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation.
    Mi J; Tang Y; Zhong C; Li YG
    J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacial properties of Lennard-Jones chains by direct simulation and density gradient theory.
    Duque D; Pàmies JC; Vega LF
    J Chem Phys; 2004 Dec; 121(22):11395-401. PubMed ID: 15634099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.