BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

635 related articles for article (PubMed ID: 12005863)

  • 1. Self-motion and the alpha relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior.
    Colmenero J; Alvarez F; Arbe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041804. PubMed ID: 12005863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence by neutron scattering of a crossover from Gaussian to non-Gaussian behavior in the alpha relaxation of polyisoprene.
    Arbe A; Colmenero J; Alvarez F; Monkenbusch M; Richter D; Farago B; Frick B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051802. PubMed ID: 12786170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation dynamics of a viscous silica melt: the intermediate scattering functions.
    Horbach J; Kob W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041503. PubMed ID: 11690029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of cage decay, near constant loss, and crossover to cooperative ion hopping in lithium metasilicate.
    Habasaki J; Ngai KL; Hiwatari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021205. PubMed ID: 12241162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen motions in the alpha-relaxation regime of poly(vinyl ethylene): a molecular dynamics simulation and neutron scattering study.
    Narros A; Alvarez F; Arbe A; Colmenero J; Richter D; Farago B
    J Chem Phys; 2004 Aug; 121(7):3282-94. PubMed ID: 15291640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin.
    Zhang Y; Tyagi M; Mamontov E; Chen SH
    J Phys Condens Matter; 2012 Feb; 24(6):064112. PubMed ID: 22277723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations.
    Harpham MR; Ladanyi BM; Levinger NE; Herwig KW
    J Chem Phys; 2004 Oct; 121(16):7855-68. PubMed ID: 15485248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a protein and its surrounding environment: a quasielastic neutron scattering study of myoglobin in water and glycerol mixtures.
    Jansson H; Kargl F; Fernandez-Alonso F; Swenson J
    J Chem Phys; 2009 May; 130(20):205101. PubMed ID: 19485482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Gaussian nature of the alpha relaxation of glass-forming polyisoprene.
    Arbe A; Colmenero J; Alvarez F; Monkenbusch M; Richter D; Farago B; Frick B
    Phys Rev Lett; 2002 Dec; 89(24):245701. PubMed ID: 12484957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-Gaussian dynamics of glycerol.
    Busselez R; Lefort R; Ghoufi A; Beuneu B; Frick B; Affouard F; Morineau D
    J Phys Condens Matter; 2011 Dec; 23(50):505102. PubMed ID: 22051524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation properties in a diffusive model of k-mers with constrained movements on a triangular lattice.
    Šćepanović JR; Lončarević I; Budinski-Petković Lj; Jakšić ZM; Vrhovac SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031109. PubMed ID: 22060330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the collective relaxation time of glass-forming polymers at intermediate length scales: application to polyisobutylene.
    Colmenero J; Alvarez F; Khairy Y; Arbe A
    J Chem Phys; 2013 Jul; 139(4):044906. PubMed ID: 23902018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic spatially heterogeneous dynamics on the alpha and beta relaxation time scales studied via a four-point correlation function.
    Flenner E; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051502. PubMed ID: 19518457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic structure of thermoreversible colloidal gels of adhesive spheres.
    Solomon MJ; Varadan P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051402. PubMed ID: 11414901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fickian yet non-Gaussian diffusion in two-dimensional Yukawa liquids.
    Ghannad Z
    Phys Rev E; 2019 Sep; 100(3-1):033211. PubMed ID: 31639989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.