These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12005886)

  • 1. Improved energy model for membrane electroporation in biological cells subjected to electrical pulses.
    Joshi RP; Hu Q; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041920. PubMed ID: 12005886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses.
    Joshi RP; Hu Q; Aly R; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011913. PubMed ID: 11461294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
    Hu Q; Viswanadham S; Joshi RP; Schoenbach KH; Beebe SJ; Blackmore PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031914. PubMed ID: 15903466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane voltage analyses in spheroidal cells in response to an intense ultrashort electrical pulse.
    Hu Q; Joshi RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011901. PubMed ID: 19257063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of electroporation in spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Artif Organs; 2004 Apr; 28(4):357-61. PubMed ID: 15084196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singular perturbation analysis of the pore creation transient.
    Neu JC; Krassowska W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031917. PubMed ID: 17025677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved numerical approach for electrical modeling of biological cell clusters.
    Ramos A
    Med Biol Eng Comput; 2010 Apr; 48(4):311-9. PubMed ID: 20213488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of a large pore subpopulation during electroporating pulses.
    Smith KC; Son RS; Gowrishankar TR; Weaver JC
    Bioelectrochemistry; 2014 Dec; 100():3-10. PubMed ID: 24290730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: a numerical simulation study.
    Joshi RP; Schoenbach KH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):1025-33. PubMed ID: 11088559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pore size on the calculated pressure at biological cells pore wall.
    El-Hag AH; Zheng Z; Boggs SA; Jayaram SH
    IEEE Trans Nanobioscience; 2006 Sep; 5(3):157-63. PubMed ID: 16999240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High electrical field effects on cell membranes.
    Pliquett U; Joshi RP; Sridhara V; Schoenbach KH
    Bioelectrochemistry; 2007 May; 70(2):275-82. PubMed ID: 17123870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--relation between short-lived and long-lived pores.
    Pavlin M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):38-46. PubMed ID: 18499534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical assessment of thermal response associated with in vivo skin electroporation: the importance of the composite skin model.
    Becker SM; Kuznetsov AV
    J Biomech Eng; 2007 Jun; 129(3):330-40. PubMed ID: 17536900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single stranded DNA translocation through a nanopore: a master equation approach.
    Flomenbom O; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041910. PubMed ID: 14682976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue.
    Esser AT; Smith KC; Gowrishankar TR; Weaver JC
    Technol Cancer Res Treat; 2007 Aug; 6(4):261-74. PubMed ID: 17668933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of uncertain electrical properties on the conditions for the onset of electroporation in an eukaryotic cell.
    Elia S; Lamberti P; Tucci V
    IEEE Trans Nanobioscience; 2010 Sep; 9(3):204-12. PubMed ID: 20805046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local temperature rises influence in vivo electroporation pore development: a numerical stratum corneum lipid phase transition model.
    Becker SM; Kuznetsov AV
    J Biomech Eng; 2007 Oct; 129(5):712-21. PubMed ID: 17887897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical field and temperature model of nonthermal irreversible electroporation in heterogeneous tissues.
    Daniels C; Rubinsky B
    J Biomech Eng; 2009 Jul; 131(7):071006. PubMed ID: 19640131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroporation of a lipid bilayer as a chemical reaction.
    Bier M; Gowrishankar TR; Chen W; Lee RC
    Bioelectromagnetics; 2004 Dec; 25(8):634-7. PubMed ID: 15515028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.