These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12005974)

  • 1. Lorenz-like systems and classical dynamical equations with memory forcing: an alternate point of view for singling out the origin of chaos.
    Festa R; Mazzino A; Vincenzi D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046205. PubMed ID: 12005974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infinite-memory classical wave-particle entities, attractor-driven active particles, and the diffusionless Lorenz equations.
    Valani RN
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38252778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the asymmetric Malkus waterwheel: the biased Lorenz equations.
    Mishra AA; Sanghi S
    Chaos; 2006 Mar; 16(1):013114. PubMed ID: 16599745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental observation of Lorenz chaos in the Quincke rotor dynamics.
    Peters F; Lobry L; Lemaire E
    Chaos; 2005 Mar; 15(1):13102. PubMed ID: 15836256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization.
    Pinsky T
    Proc Natl Acad Sci U S A; 2023 Aug; 120(31):e2205552120. PubMed ID: 37487090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simplifications of the Lorenz attractor.
    Sprott JC
    Nonlinear Dynamics Psychol Life Sci; 2009 Jul; 13(3):271-8. PubMed ID: 19527618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-induced Hopf-bifurcation-type sequence and transition to chaos in the lorenz equations.
    Gao JB; Tung WW; Rao N
    Phys Rev Lett; 2002 Dec; 89(25):254101. PubMed ID: 12484887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subharmonic resonance and chaos in forced excitable systems.
    Othmer HG; Xie M
    J Math Biol; 1999 Aug; 39(2):139-71. PubMed ID: 10447587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling chaos in a Lorenz-like system using feedback.
    Kociuba G; Heckenberg NR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066212. PubMed ID: 14754302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry breaking, mixing, instability, and low-frequency variability in a minimal Lorenz-like system.
    Lucarini V; Fraedrich K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026313. PubMed ID: 19792255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term memory contribution as applied to the motion of discrete dynamical systems.
    Stanislavsky AA
    Chaos; 2006 Dec; 16(4):043105. PubMed ID: 17199383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the algebraic structure of Lorenz-like systems using feedback circuit analysis and piecewise affine models.
    Letellier C; Amaral GF; Aguirre LA
    Chaos; 2007 Jun; 17(2):023104. PubMed ID: 17614658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piecewise affine models of chaotic attractors: the Rossler and Lorenz systems.
    Amaral GF; Letellier C; Aguirre LA
    Chaos; 2006 Mar; 16(1):013115. PubMed ID: 16599746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of intrinsic fluctuations by the Lorenz equations.
    Fox RF; Elston TC
    Chaos; 1993 Jul; 3(3):313-323. PubMed ID: 12780040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical and statistical effects of the intrinsic curvature of internal space of molecules.
    Teramoto H; Takatsuka K
    J Chem Phys; 2005 Feb; 122(7):074101. PubMed ID: 15743215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of chaos in soft interactions and signatures of nonergodicity.
    Beims MW; Manchein C; Rost JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056203. PubMed ID: 18233735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and entropy production due to chaos or turbulence.
    Mori H; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026302. PubMed ID: 11308572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady two-layer flows over an obstacle.
    Dias F; Vanden-Broeck JM
    Philos Trans A Math Phys Eng Sci; 2002 Oct; 360(1799):2137-54. PubMed ID: 12804231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extension to chaos control via Lie derivatives: Fully linearizable systems.
    Femat R
    Chaos; 2002 Dec; 12(4):1027-1033. PubMed ID: 12779626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.