These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12006011)

  • 1. Lattice-gas model based on field mediators for immiscible fluids.
    dos Santos LO; Philippi PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046305. PubMed ID: 12006011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice-Boltzmann model based on field mediators for immiscible fluids.
    Santos LO; Facin PC; Philippi PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056302. PubMed ID: 14682879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model.
    Xing XQ; Butler DL; Ng SH; Wang Z; Danyluk S; Yang C
    J Colloid Interface Sci; 2007 Jul; 311(2):609-18. PubMed ID: 17434175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicomponent lattice Boltzmann equation method with a discontinuous hydrodynamic interface.
    Spencer TJ; Halliday I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063305. PubMed ID: 24483582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
    Liu H; Valocchi AJ; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046309. PubMed ID: 22680576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly in binary immiscible and ternary amphiphilic fluids.
    Love PJ; Coveney PV; Boghosian BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021503. PubMed ID: 11497585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios.
    Porter ML; Coon ET; Kang Q; Moulton JD; Carey JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036701. PubMed ID: 23031047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of a microfluidic flow-focusing device.
    Dupin MM; Halliday I; Care CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):055701. PubMed ID: 16802991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary rise between parallel plates under dynamic conditions.
    Wolf FG; dos Santos LO; Philippi PC
    J Colloid Interface Sci; 2010 Apr; 344(1):171-9. PubMed ID: 20096416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography.
    Sukop MC; Huang H; Lin CL; Deo MD; Oh K; Miller JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026710. PubMed ID: 18352151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperscaling relationship between the interfacial tension of liquids and their correlation length near the critical point.
    Mayoral E; Goicochea AG
    Soft Matter; 2014 Dec; 10(45):9054-8. PubMed ID: 25299248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional lattice-Boltzmann model of van der Waals fluids.
    Kalarakis AN; Burganos VN; Payatakes AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016702. PubMed ID: 12636632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Formation of Low-Volume Liquid Pillars between Plates with a Lattice of Wetting Patches by Use of a Second Immiscible Fluid.
    Silver J; Mi Z; Takamoto K; Bungay P; Brown J; Powell A
    J Colloid Interface Sci; 1999 Nov; 219(1):81-89. PubMed ID: 10527574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laplace's law and the interfacial momentum source in two-phase models.
    Steenbakkers RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066306. PubMed ID: 20866521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids.
    Ginzburg I; Steiner K
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):453-66. PubMed ID: 16210190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice Boltzmann simulation of thermal nonideal fluids.
    Gonnella G; Lamura A; Sofonea V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036703. PubMed ID: 17930357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoresis-driven spreading of immersed liquid droplets.
    Brown CV; McHale G; Trabi CL
    Langmuir; 2015 Jan; 31(3):1011-6. PubMed ID: 25519875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.