These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 12006024)

  • 1. Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas.
    Sentoku Y; Mima K; Sheng ZM; Kaw P; Nishihara K; Nishikawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046408. PubMed ID: 12006024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous resistivity resulting from MeV-electron transport in overdense plasma.
    Sentoku Y; Mima K; Kaw P; Nishikawa K
    Phys Rev Lett; 2003 Apr; 90(15):155001. PubMed ID: 12732040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas.
    Cai HB; Zhu SP; Chen M; Wu SZ; He XT; Mima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036408. PubMed ID: 21517605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion and transport of energetic particles due to the interaction of intense laser pulses with overdense plasmas.
    Adam JC; Héron A; Laval G
    Phys Rev Lett; 2006 Nov; 97(20):205006. PubMed ID: 17155691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collisional relaxation of superthermal electrons generated by relativistic laser pulses in dense plasma.
    Kemp AJ; Sentoku Y; Sotnikov V; Wilks SC
    Phys Rev Lett; 2006 Dec; 97(23):235001. PubMed ID: 17280208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of strong quasistatic magnetic fields in interactions of ultraintense and short laser pulses with overdense plasma targets.
    Cai HB; Yu W; Zhu SP; Zhou CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036403. PubMed ID: 17930347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of radial Weibel instability in relativistic intensity laser-plasma interactions inside a sub-micron thick liquid target.
    Ngirmang GK; Morrison JT; George KM; Smith JR; Frische KD; Orban C; Chowdhury EA; Roquemore WM
    Sci Rep; 2020 Jun; 10(1):9872. PubMed ID: 32555513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating overcritical dense relativistic electron beams via self-matching resonance acceleration.
    Liu B; Wang HY; Liu J; Fu LB; Xu YJ; Yan XQ; He XT
    Phys Rev Lett; 2013 Jan; 110(4):045002. PubMed ID: 25166171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of heating-compressed fast-ignition cores by petawatt laser-generated electrons.
    Campbell RB; Kodama R; Mehlhorn TA; Tanaka KA; Welch DR
    Phys Rev Lett; 2005 Feb; 94(5):055001. PubMed ID: 15783653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma.
    Zhidkov A; Koga J; Sasaki A; Uesaka M
    Phys Rev Lett; 2002 May; 88(18):185002. PubMed ID: 12005689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas.
    Sano T; Tanaka Y; Iwata N; Hata M; Mima K; Murakami M; Sentoku Y
    Phys Rev E; 2017 Oct; 96(4-1):043209. PubMed ID: 29347491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed particle-in-cell simulations on the transport of a relativistic electron beam in plasmas.
    Karmakar A; Kumar N; Pukhov A; Polomarov O; Shvets G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016401. PubMed ID: 19658817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.
    Kemp AJ; Divol L
    Phys Rev Lett; 2012 Nov; 109(19):195005. PubMed ID: 23215393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of intense electromagnetic waves in plasmas.
    Shukla PK; Eliasson B
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1757-69. PubMed ID: 18218603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic laser channeling in plasmas for fast ignition.
    Lei AL; Pukhov A; Kodama R; Yabuuchi T; Adumi K; Endo K; Freeman RR; Habara H; Kitagawa Y; Kondo K; Kumar GR; Matsuoka T; Mima K; Nagatomo H; Norimatsu T; Shorokhov O; Snavely R; Yang XQ; Zheng J; Tanaka KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066403. PubMed ID: 18233928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasharp-front laser pulses generated by energetic-electron flux triggering of laser propagation in overdense plasmas.
    Li XY; Yu Y; Shen BF; Wang JX; Zhu WJ; Chen ZY; Ye Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023106. PubMed ID: 24032951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced collective stopping and drift of electron beams in fusion plasmas with heavy-ion species.
    Wang XJ; Hu ZH; Wang YN
    Phys Rev E; 2020 Apr; 101(4-1):043203. PubMed ID: 32422758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface oscillations in overdense plasmas irradiated by ultrashort laser pulses.
    Macchi A; Cornolti F; Pegoraro F; Liseikina TV; Ruhl H; Vshivkov VA
    Phys Rev Lett; 2001 Nov; 87(20):205004. PubMed ID: 11690480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigating the relativistic laser beam filamentation via an elliptical beam profile.
    Huang TW; Zhou CT; Robinson AP; Qiao B; Zhang H; Wu SZ; Zhuo HB; Norreys PA; He XT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053106. PubMed ID: 26651801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saturation of the asymmetric current filamentation instability under conditions relevant to relativistic shock precursors.
    Bresci V; Gremillet L; Lemoine M
    Phys Rev E; 2022 Mar; 105(3-2):035202. PubMed ID: 35428059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.