These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 12006047)

  • 1. Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect.
    Liu NH; Zhu SY; Chen H; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046607. PubMed ID: 12006047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superluminal propagation of light pulses: A result of interference.
    Wang LG; Liu NH; Lin Q; Zhu SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066606. PubMed ID: 14754335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching from normal to anomalous dispersion in photonic crystal with Raman gain defect.
    Arkhipkin VG; Myslivets SA
    Opt Lett; 2014 Apr; 39(7):1803-6. PubMed ID: 24686609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals.
    Li-Gang W; Nian-Hua L; Qiang L; Shi-Yao Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016601. PubMed ID: 15324183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures.
    D'Aguanno G; Centini M; Scalora M; Sibilia C; Bloemer MJ; Bowden CM; Haus JW; Bertolotti M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036610. PubMed ID: 11308791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency dynamics of superluminal pulse transition to the subluminal regime.
    Dorrah AH; Ramakrishnan A; Mojahedi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033206. PubMed ID: 25871237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint time-frequency and finite-difference time-domain analysis of precursor fields in dispersive media.
    Safian R; Sarris CD; Mojahedi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066602. PubMed ID: 16906992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical switch based on doped graphene quantum dots in a defect layer of a one-dimensional photonic crystal.
    Sahrai M; Abbasabadi M
    Appl Opt; 2018 Jan; 57(3):521-526. PubMed ID: 29400802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gain-assisted superluminal light propagation.
    Wang LJ; Kuzmich A; Dogariu A
    Nature; 2000 Jul; 406(6793):277-9. PubMed ID: 10917523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superluminal pulse reflection and transmission in a slab system doped with dispersive materials.
    Wang LG; Chen H; Zhu SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066602. PubMed ID: 15697521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals.
    Bo F; Zhang G; Xu J
    Opt Express; 2005 Oct; 13(20):8198-203. PubMed ID: 19498849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal velocity, causality, and quantum noise in superluminal light pulse propagation.
    Kuzmich A; Dogariu A; Wang LJ; Milonni PW; Chiao RY
    Phys Rev Lett; 2001 Apr; 86(18):3925-9. PubMed ID: 11328062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: theory and experiment.
    Haché A; Poirier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036608. PubMed ID: 11909286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.
    Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S
    Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulated generation of superluminal light pulses via four-wave mixing.
    Glasser RT; Vogl U; Lett PD
    Phys Rev Lett; 2012 Apr; 108(17):173902. PubMed ID: 22680868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow to superluminal light waves in thin 3D photonic crystals.
    Galisteo-López JF; Galli M; Balestreri A; Patrini M; Andreani LC; López C
    Opt Express; 2007 Nov; 15(23):15342-50. PubMed ID: 19550820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps.
    Longhi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):037601. PubMed ID: 11580484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap.
    Longhi S; Marano M; Laporta P; Belmonte M; Crespi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):045602. PubMed ID: 12005917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superluminal k-Gap Solitons in Nonlinear Photonic Time Crystals.
    Pan Y; Cohen MI; Segev M
    Phys Rev Lett; 2023 Jun; 130(23):233801. PubMed ID: 37354410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of a pulse peak using a peak-removed Gaussian optical pulse in a superluminal medium.
    Tomita M; Amano H; Masegi S; Talukder AI
    Phys Rev Lett; 2014 Mar; 112(9):093903. PubMed ID: 24655253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.