BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12006484)

  • 1. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids.
    Kokoeva MV; Storch KF; Klein C; Oesterhelt D
    EMBO J; 2002 May; 21(10):2312-22. PubMed ID: 12006484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BasT, a membrane-bound transducer protein for amino acid detection in Halobacterium salinarum.
    Kokoeva MV; Oesterhelt D
    Mol Microbiol; 2000 Feb; 35(3):647-56. PubMed ID: 10672186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus.
    Schlesner M; Miller A; Streif S; Staudinger WF; Müller J; Scheffer B; Siedler F; Oesterhelt D
    BMC Microbiol; 2009 Mar; 9():56. PubMed ID: 19291314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum.
    Storch KF; Rudolph J; Oesterhelt D
    EMBO J; 1999 Mar; 18(5):1146-58. PubMed ID: 10064582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myoglobin-like aerotaxis transducers in Archaea and Bacteria.
    Hou S; Larsen RW; Boudko D; Riley CW; Karatan E; Zimmer M; Ordal GW; Alam M
    Nature; 2000 Feb; 403(6769):540-4. PubMed ID: 10676961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.
    Yao VJ; Spudich JL
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11915-9. PubMed ID: 1465418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An archaeal photosignal-transducing module mediates phototaxis in Escherichia coli.
    Jung KH; Spudich EN; Trivedi VD; Spudich JL
    J Bacteriol; 2001 Nov; 183(21):6365-71. PubMed ID: 11591681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum.
    Nutsch T; Marwan W; Oesterhelt D; Gilles ED
    Genome Res; 2003 Nov; 13(11):2406-12. PubMed ID: 14559782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum.
    Perazzona B; Spudich JL
    J Bacteriol; 1999 Sep; 181(18):5676-83. PubMed ID: 10482508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate-dependent behavior of the archaeon Halobacterium salinarum strain R1.
    Wende A; Furtwängler K; Oesterhelt D
    J Bacteriol; 2009 Jun; 191(12):3852-60. PubMed ID: 19363117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MpcT is the transducer for membrane potential changes in Halobacterium salinarum.
    Koch MK; Oesterhelt D
    Mol Microbiol; 2005 Mar; 55(6):1681-94. PubMed ID: 15752193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression of the signaling complex sensory rhodopsin II/transducer II from Halobacterium salinarum in Escherichia coli.
    Kim YJ; Chizhov I; Engelhard M
    Photochem Photobiol; 2009; 85(2):521-8. PubMed ID: 19067948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon Halobacterium salinarum.
    Hou S; Brooun A; Yu HS; Freitas T; Alam M
    J Bacteriol; 1998 Mar; 180(6):1600-2. PubMed ID: 9515936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis.
    Streif S; Oesterhelt D; Marwan W
    BMC Syst Biol; 2010 Mar; 4():27. PubMed ID: 20298562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea.
    Levin I; Giladi M; Altman-Price N; Ortenberg R; Mevarech M
    Mol Microbiol; 2004 Dec; 54(5):1307-18. PubMed ID: 15554970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins.
    Zhang W; Brooun A; McCandless J; Banda P; Alam M
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4649-54. PubMed ID: 8643458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, sequencing, and characterization of ribosomal protein and RNA polymerase genes from the region analogous to the alpha-operon of escherichia coli in halophilic archaea, halobacterium halobium.
    Sano K; Taguchi A; Furumoto H; Uda T; Itoh T
    Biochem Biophys Res Commun; 1999 Oct; 264(1):24-8. PubMed ID: 10527834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions.
    Lacal J; García-Fontana C; Muñoz-Martínez F; Ramos JL; Krell T
    Environ Microbiol; 2010 Nov; 12(11):2873-84. PubMed ID: 20738376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological sites of deamidation and methyl esterification in sensory transducers of Halobacterium salinarum.
    Koch MK; Staudinger WF; Siedler F; Oesterhelt D
    J Mol Biol; 2008 Jul; 380(2):285-302. PubMed ID: 18514223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic osmolytes in methanogenic archaebacteria.
    Robertson DE; Roberts MF
    Biofactors; 1991 Jan; 3(1):1-9. PubMed ID: 1905546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.