These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 12006603)

  • 41. Degradation of Alzheimer's beta-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme.
    McDermott JR; Gibson AM
    Neurochem Res; 1997 Jan; 22(1):49-56. PubMed ID: 9021762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 22R-Hydroxycholesterol protects neuronal cells from beta-amyloid-induced cytotoxicity by binding to beta-amyloid peptide.
    Yao ZX; Brown RC; Teper G; Greeson J; Papadopoulos V
    J Neurochem; 2002 Dec; 83(5):1110-9. PubMed ID: 12437582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease.
    Verdier Y; Zarándi M; Penke B
    J Pept Sci; 2004 May; 10(5):229-48. PubMed ID: 15160835
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First evidence for helical transitions in supercoiled DNA by amyloid Beta Peptide (1-42) and aluminum: a new insight in understanding Alzheimer's disease.
    Hegde ML; Anitha S; Latha KS; Mustak MS; Stein R; Ravid R; Rao KS
    J Mol Neurosci; 2004; 22(1-2):19-31. PubMed ID: 14742907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glial Draper Rescues Aβ Toxicity in a
    Ray A; Speese SD; Logan MA
    J Neurosci; 2017 Dec; 37(49):11881-11893. PubMed ID: 29109235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemistry of Alzheimer Disease Amyloid Beta Peptides.
    Chiorcea-Paquim AM; Enache TA; Oliveira-Brett AM
    Curr Med Chem; 2018; 25(33):4066-4083. PubMed ID: 29446720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N-Terminal Hypothesis for Alzheimer's Disease.
    Murray B; Sharma B; Belfort G
    ACS Chem Neurosci; 2017 Mar; 8(3):432-434. PubMed ID: 28186729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mapping ApoE/Aβ binding regions to guide inhibitor discovery.
    Liu Q; Wu WH; Fang CL; Li RW; Liu P; Lei P; Hu J; Sun X; Zheng YZ; Zhao YF; Li YM
    Mol Biosyst; 2011 May; 7(5):1693-700. PubMed ID: 21409287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual effects of familial Alzheimer's disease mutations (D7H, D7N, and H6R) on amyloid β peptide: correlation dynamics and zinc binding.
    Xu L; Chen Y; Wang X
    Proteins; 2014 Dec; 82(12):3286-97. PubMed ID: 25137638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RAGE regulates BACE1 and Abeta generation via NFAT1 activation in Alzheimer's disease animal model.
    Cho HJ; Son SM; Jin SM; Hong HS; Shin DH; Kim SJ; Huh K; Mook-Jung I
    FASEB J; 2009 Aug; 23(8):2639-49. PubMed ID: 19332646
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Etiology of Alzheimer's disease: kinetic, thermodynamic and fluorimetric analyses of interactions of pseudo Aβ-peptides with neuronal nitric oxide synthase.
    Padayachee ER; Whiteley CG
    Neuropeptides; 2013 Oct; 47(5):321-7. PubMed ID: 24034554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer's disease.
    Kim DH; Lee D; Lim H; Choi SJ; Oh W; Yang YS; Chang JH; Jeon HB
    Biochem Biophys Res Commun; 2018 Oct; 504(4):933-940. PubMed ID: 30224067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes.
    Rensink AA; Otte-Höller I; de Boer R; Bosch RR; ten Donkelaar HJ; de Waal RM; Verbeek MM; Kremer B
    Neurobiol Aging; 2004 Jan; 25(1):93-103. PubMed ID: 14675735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of Alzheimer's amyloid-beta aggregation in-vitro by carbenoxolone: Insight into mechanism of action.
    Sharma S; Nehru B; Saini A
    Neurochem Int; 2017 Sep; 108():481-493. PubMed ID: 28652220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytoplasmic gelsolin increases mitochondrial activity and reduces Abeta burden in a mouse model of Alzheimer's disease.
    Antequera D; Vargas T; Ugalde C; Spuch C; Molina JA; Ferrer I; Bermejo-Pareja F; Carro E
    Neurobiol Dis; 2009 Oct; 36(1):42-50. PubMed ID: 19607917
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peripheral complement interactions with amyloid β peptide: Erythrocyte clearance mechanisms.
    Brubaker WD; Crane A; Johansson JU; Yen K; Garfinkel K; Mastroeni D; Asok P; Bradt B; Sabbagh M; Wallace TL; Glavis-Bloom C; Tenner AJ; Rogers J
    Alzheimers Dement; 2017 Dec; 13(12):1397-1409. PubMed ID: 28475854
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential modulation of Alzheimer's disease amyloid beta-peptide accumulation by diverse classes of metal ligands.
    Caragounis A; Du T; Filiz G; Laughton KM; Volitakis I; Sharples RA; Cherny RA; Masters CL; Drew SC; Hill AF; Li QX; Crouch PJ; Barnham KJ; White AR
    Biochem J; 2007 Nov; 407(3):435-50. PubMed ID: 17680773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Blocking the apolipoprotein E/amyloid-beta interaction as a potential therapeutic approach for Alzheimer's disease.
    Sadowski MJ; Pankiewicz J; Scholtzova H; Mehta PD; Prelli F; Quartermain D; Wisniewski T
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18787-92. PubMed ID: 17116874
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design, synthesis, and evaluation of Trolox-conjugated amyloid-β C-terminal peptides for therapeutic intervention in an in vitro model of Alzheimer's disease.
    Arai T; Ohno A; Kazunori M; Kakizawa T; Kuwata H; Ozawa T; Shibanuma M; Hara S; Ishida S; Kurihara M; Miyata N; Nakagawa H; Fukuhara K
    Bioorg Med Chem; 2016 Sep; 24(18):4138-4143. PubMed ID: 27407032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling the binding mechanism of Alzheimer's Aβ1-42 to nicotinic acetylcholine receptors based on similarity with snake α-neurotoxins.
    Maatuk N; Samson AO
    Neurotoxicology; 2013 Jan; 34():236-42. PubMed ID: 23022323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.