These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12006809)

  • 61. Pressure support ventilation decreases inspiratory work of breathing during general anesthesia and spontaneous ventilation.
    Christie JM; Smith RA
    Anesth Analg; 1992 Aug; 75(2):167-71. PubMed ID: 1632530
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Work of breathing during nasal continuous positive airway pressure in preterm infants: a comparison of bubble vs variable-flow devices.
    Liptsen E; Aghai ZH; Pyon KH; Saslow JG; Nakhla T; Long J; Steele AM; Habib RH; Courtney SE
    J Perinatol; 2005 Jul; 25(7):453-8. PubMed ID: 15858606
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of pressure and flow triggering systems during continuous positive airway pressure.
    Branson RD; Campbell RS; Davis K; Johnson DJ
    Chest; 1994 Aug; 106(2):540-4. PubMed ID: 7774334
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease.
    Petrof BJ; Legaré M; Goldberg P; Milic-Emili J; Gottfried SB
    Am Rev Respir Dis; 1990 Feb; 141(2):281-9. PubMed ID: 2405757
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effects of pressure- versus volume-controlled ventilation on ventilator work of breathing.
    Monjezi M; Jamaati H
    Biomed Eng Online; 2020 Sep; 19(1):72. PubMed ID: 32933529
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect on work of breathing of different continuous positive airway pressure devices evaluated in a premature neonatal lung model.
    Nikischin W; Petridis M; Noeske J; Spengler D; von Bismarck P
    Pediatr Crit Care Med; 2011 Nov; 12(6):e376-82. PubMed ID: 21499172
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The impact of heat and moisture exchanging humidifiers on work of breathing.
    Johnson PA; Raper RF; Fisher MM
    Anaesth Intensive Care; 1995 Dec; 23(6):697-701. PubMed ID: 8669603
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Calculation of intratracheal airway pressure in ventilated neonatal piglets with endotracheal tube leaks.
    Nikischin W; Herber-Jonat S; von Bismarck P; Lange M; Grabitz R
    Crit Care Med; 2007 May; 35(5):1383-9. PubMed ID: 17414085
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inspiratory work imposed by continuous positive airway pressure (CPAP) machines: the effect of CPAP level and endotracheal tube size.
    Moran JL; Homan S; O'Fathartaigh M; Jackson M; Leppard P
    Intensive Care Med; 1992; 18(3):148-54. PubMed ID: 1644962
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pressure support. Changes in ventilatory pattern and components of the work of breathing.
    Van de Graaff WB; Gordey K; Dornseif SE; Dries DJ; Kleinman BS; Kumar P; Mathru M
    Chest; 1991 Oct; 100(4):1082-9. PubMed ID: 1914562
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Intratracheal pulmonary ventilation keeps tracheal tubes clean without impairing mucociliary transport.
    Trawöger R; Kolobow T; Patroniti N; Forcier K
    Scand J Clin Lab Invest; 2002; 62(5):351-6. PubMed ID: 12387580
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Respiratory muscle performance, pulmonary mechanics, and gas exchange between the BiPAP S/T-D system and the Servo Ventilator 900C with bilevel positive airway pressure ventilation following gradual pressure support weaning.
    Patel RG; Petrini MF
    Chest; 1998 Nov; 114(5):1390-6. PubMed ID: 9824020
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The effect of ventilator performance on airway pressure release ventilation: a model lung study.
    Yoshida T; Uchiyama A; Mashimo T; Fujino Y
    Anesth Analg; 2011 Sep; 113(3):529-33. PubMed ID: 21519042
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of expiratory flow resistance on inspiratory work of breathing.
    Banner MJ; Downs JB; Kirby RR; Smith RA; Boysen PG; Lampotang S
    Chest; 1988 Apr; 93(4):795-9. PubMed ID: 3280260
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Work of breathing after extubation.
    Ishaaya AM; Nathan SD; Belman MJ
    Chest; 1995 Jan; 107(1):204-9. PubMed ID: 7813279
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief?
    Maeda Y; Fujino Y; Uchiyama A; Taenaka N; Mashimo T; Nishimura M
    Crit Care; 2003 Oct; 7(5):R92-7. PubMed ID: 12974975
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Proportional assist versus pressure support ventilation in patients with acute respiratory failure: cardiorespiratory responses to artificially increased ventilatory demand.
    Varelmann D; Wrigge H; Zinserling J; Muders T; Hering R; Putensen C
    Crit Care Med; 2005 Sep; 33(9):1968-75. PubMed ID: 16148467
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The impact of imposed expiratory resistance in neonatal mechanical ventilation: a laboratory evaluation.
    DiBlasi RM; Salyer JW; Zignego JC; Redding GJ; Richardson CP
    Respir Care; 2008 Nov; 53(11):1450-60. PubMed ID: 18957147
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Imposed power of breathing associated with use of an impedance threshold device.
    Idris AH; Convertino VA; Ratliff DA; Doerr DF; Lurie KG; Gabrielli A; Banner MJ
    Respir Care; 2007 Feb; 52(2):177-83. PubMed ID: 17261206
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Advanced cuff pressure control ventilation (ACPCV); a bench study of a new concept of mechanical ventilation.
    Higeno R; Uchiyama A; Enokidani Y; Fujino Y
    J Med Eng Technol; 2021 May; 45(4):324-333. PubMed ID: 33843444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.