BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 12007009)

  • 21. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNA
    Stephen P; Ye S; Zhou M; Song J; Zhang R; Wang ED; Giegé R; Lin SX
    J Mol Biol; 2018 May; 430(11):1590-1606. PubMed ID: 29678554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding.
    Delagoutte B; Moras D; Cavarelli J
    EMBO J; 2000 Nov; 19(21):5599-610. PubMed ID: 11060012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two forms of human cytoplasmic arginyl-tRNA synthetase produced from two translation initiations by a single mRNA.
    Zheng YG; Wei H; Ling C; Xu MG; Wang ED
    Biochemistry; 2006 Jan; 45(4):1338-44. PubMed ID: 16430231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition of various arginine transfer ribonucleic acids with arginyl-tRNA synthetase purified from human placenta.
    Katon N; Saneyoshi M
    Nucleic Acids Symp Ser; 1979; (6):s119-22. PubMed ID: 547226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression.
    Ueda M; Kinoshita H; Maeda SI; Zou W; Tanaka A
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):488-94. PubMed ID: 12764563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A chimeric inorganic pyrophosphatase derived from Escherichia coli and Thermus thermophilus has an increased thermostability.
    Satoh T; Takahashi Y; Oshida N; Shimizu A; Shinoda H; Watanabe M; Samejima T
    Biochemistry; 1999 Feb; 38(5):1531-6. PubMed ID: 9931019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Deletion of 245 and 252 Arginines in E. coli Arginyl-tRNA Synthetase on Its Structure and Function.
    Wu JF; Wang ED; Wang YL
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 1998; 30(6):611-617. PubMed ID: 12167998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-level expression and single-step purification of leucyl-tRNA synthetase from Escherichia coli.
    Chen J; Li Y; Wang E; Wang Y
    Protein Expr Purif; 1999 Feb; 15(1):115-20. PubMed ID: 10024478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of tryptophan residues in Escherichia coli arginyl-tRNA synthetase.
    Zhang QS; Wang ED; Wang YL
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):136-42. PubMed ID: 9748544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation of the carboxy terminal zinc finger of E. coli isoleucyl-tRNA synthetase alters zinc binding and aminoacylation activity.
    Zhou L; Rosevear PR
    Biochem Biophys Res Commun; 1995 Nov; 216(2):648-54. PubMed ID: 7488160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-terminal deletions and His-tag fusions dramatically affect expression of cytochrome p450 2C2 in bacteria.
    Doray B; Chen CD; Kemper B
    Arch Biochem Biophys; 2001 Sep; 393(1):143-53. PubMed ID: 11516171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Arc1p in the modulation of yeast glutamyl-tRNA synthetase activity.
    Graindorge JS; Senger B; Tritch D; Simos G; Fasiolo F
    Biochemistry; 2005 Feb; 44(4):1344-52. PubMed ID: 15667228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and expression of human phenylalanyl-tRNA synthetase in Escherichia coli: comparative study of purified recombinant enzymes.
    Moor N; Linshiz G; Safro M
    Protein Expr Purif; 2002 Mar; 24(2):260-7. PubMed ID: 11858721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Escherichia coli argU10(Ts) phenotype is caused by a reduction in the cellular level of the argU tRNA for the rare codons AGA and AGG.
    Sakamoto K; Ishimaru S; Kobayashi T; Walker JR; Yokoyama S
    J Bacteriol; 2004 Sep; 186(17):5899-905. PubMed ID: 15317795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determinants in tRNA for activation of arginyl-tRNA synthetase: evidence that tRNA flexibility is required for the induced-fit mechanism.
    Guigou L; Mirande M
    Biochemistry; 2005 Dec; 44(50):16540-8. PubMed ID: 16342945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disordered C-terminal domain of tyrosyl transfer-RNA synthetase: evidence for a folded state.
    Guez-Ivanier V; Bedouelle H
    J Mol Biol; 1996 Jan; 255(1):110-20. PubMed ID: 8568859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase.
    Shimada A; Nureki O; Goto M; Takahashi S; Yokoyama S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13537-42. PubMed ID: 11698642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase.
    Fourmy D; Meinnel T; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Jun; 231(4):1068-77. PubMed ID: 8515465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transfer RNA-pseudouridine synthetase Pus1 of Saccharomyces cerevisiae contains one atom of zinc essential for its native conformation and tRNA recognition.
    Arluison V; Hountondji C; Robert B; Grosjean H
    Biochemistry; 1998 May; 37(20):7268-76. PubMed ID: 9585540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arginyl-tRNA synthetase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C]arginine.
    Charlier J; Gerlo E
    Eur J Biochem; 1976 Nov; 70(1):137-45. PubMed ID: 795645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.