BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12007178)

  • 1. Biomimetic studies on iodothyronine deiodinase intermediates: modeling the reduction of selenenyl iodide by thiols.
    Mugesh G; du Mont WW; Wismach C; Jones PG
    Chembiochem; 2002 May; 3(5):440-7. PubMed ID: 12007178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenenyl iodide: a new substrate for mammalian thioredoxin reductase.
    Mugesh G; Klotz LO; du Mont WW; Becker K; Sies H
    Org Biomol Chem; 2003 Aug; 1(16):2848-52. PubMed ID: 12968334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a Stable Primary-Alkyl-Substituted Selenenyl Iodide and Its Hydrolytic Conversion to the Corresponding Selenenic Acid.
    Sase S; Kakimoto R; Kimura R; Goto K
    Molecules; 2015 Dec; 20(12):21415-20. PubMed ID: 26633336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic studies on selenoenzymes: modeling the role of proximal histidines in thioredoxin reductases.
    Sarma BK; Mugesh G
    Inorg Chem; 2006 Jul; 45(14):5307-14. PubMed ID: 16813393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study.
    Mugesh G; Panda A; Singh HB; Punekar NS; Butcher RJ
    J Am Chem Soc; 2001 Feb; 123(5):839-50. PubMed ID: 11456617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of the 5'-deiodination of thyroxine by iodothyronine deiodinase: chemical corroboration of a selenenyl iodide intermediate.
    Goto K; Sonoda D; Shimada K; Sase S; Kawashima T
    Angew Chem Int Ed Engl; 2010; 49(3):545-7. PubMed ID: 19998295
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthesis, structure and reactivity of [o-(2,6-diisopropylphenyliminomethinyl)phenyl]selenenyl selenocyanate (RSeSeCN) and related derivatives.
    Rakesh P; Singh HB; Jasinski JP; Golen JA
    Dalton Trans; 2014 Jul; 43(25):9431-7. PubMed ID: 24671344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is halogen bonding the basis for iodothyronine deiodinase activity?
    Bayse CA; Rafferty ER
    Inorg Chem; 2010 Jun; 49(12):5365-7. PubMed ID: 20504030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the reaction of ebselen with endogenous thiols: dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen.
    Haenen GR; De Rooij BM; Vermeulen NP; Bast A
    Mol Pharmacol; 1990 Mar; 37(3):412-22. PubMed ID: 2107391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: unexpected complications with thiol exchange reactions.
    Sarma BK; Mugesh G
    J Am Chem Soc; 2005 Aug; 127(32):11477-85. PubMed ID: 16089478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deiodination of thyroid hormones by iodothyronine deiodinase mimics: does an increase in the reactivity alter the regioselectivity?
    Manna D; Mugesh G
    J Am Chem Soc; 2011 Jul; 133(26):9980-3. PubMed ID: 21648483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant activity of the anti-inflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates.
    Sarma BK; Mugesh G
    Chemistry; 2008; 14(34):10603-14. PubMed ID: 18932179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism.
    Schweizer U; Schlicker C; Braun D; Köhrle J; Steegborn C
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10526-31. PubMed ID: 25002520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the structure and mechanism of iodothyronine deiodinases.
    Schweizer U; Steegborn C
    J Mol Endocrinol; 2015 Dec; 55(3):R37-52. PubMed ID: 26390881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridoxine-derived organoselenium compounds with glutathione peroxidase-like and chain-breaking antioxidant activity.
    Singh VP; Poon JF; Butcher RJ; Engman L
    Chemistry; 2014 Sep; 20(39):12563-71. PubMed ID: 25123932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.
    Bhabak KP; Mugesh G
    Acc Chem Res; 2010 Nov; 43(11):1408-19. PubMed ID: 20690615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic ring strain in arylselenenyl bromides: role in facile synthesis of selenenate esters via intramolecular cyclization.
    Selvakumar K; Singh HB; Butcher RJ
    Chemistry; 2010 Sep; 16(34):10576-91. PubMed ID: 20648486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of the Formation of a Selenocysteine Selenenic Acid through Hydrolysis of a Selenocysteine Selenenyl Iodide Utilizing a Protective Molecular Cradle.
    Goto K; Kimura R; Masuda R; Karasaki T; Sase S
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding.
    Manna D; Mugesh G
    J Am Chem Soc; 2012 Mar; 134(9):4269-79. PubMed ID: 22352472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-thyroid drugs and thyroid hormone synthesis: effect of methimazole derivatives on peroxidase-catalyzed reactions.
    Roy G; Mugesh G
    J Am Chem Soc; 2005 Nov; 127(43):15207-17. PubMed ID: 16248663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.