These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 12007637)
1. Calcium modulates the ATP and ADP hydrolysis in human placental mitochondria. Martínez F; Uribe A; Espinosa-García MT; Flores-Herrera O; García-Pérez C; Milán R Int J Biochem Cell Biol; 2002 Aug; 34(8):992-1003. PubMed ID: 12007637 [TBL] [Abstract][Full Text] [Related]
2. Differential effects of magnesium on the hydrolysis of ADP and ATP in human term placenta. Effect of substrates and potassium. Martínez F; Uribe A; Milán R; Teresa Espinosa-García M; Gracía-Pérez C; Flores-Herrera O Int J Biochem Cell Biol; 2002 Aug; 34(8):1004-16. PubMed ID: 12007638 [TBL] [Abstract][Full Text] [Related]
3. Presence of two enzymes, different from the F1F0-ATPase, hydrolyzing nucleotides in human term placental mitochondria. Uribe A; Flores-Herrera O; Rendón JL; Espinosa-Garcia MT; Martinez F Int J Biochem Cell Biol; 1999 Feb; 31(2):319-30. PubMed ID: 10216964 [TBL] [Abstract][Full Text] [Related]
4. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D; Boyer PD Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834 [TBL] [Abstract][Full Text] [Related]
5. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP. Civelek VN; Deeney JT; Shalosky NJ; Tornheim K; Hansford RG; Prentki M; Corkey BE Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):615-21. PubMed ID: 8809055 [TBL] [Abstract][Full Text] [Related]
6. Effect of ADP on the rate of acetyl phosphate hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum. Montero-Lomeli M; De Meis L Eur J Biochem; 1989 Dec; 186(1-2):339-42. PubMed ID: 2532131 [TBL] [Abstract][Full Text] [Related]
7. Respiratory control induced by ATP in human term placental mitochondria. Martínez F; Espinosa-García T; Flores-Herrera O; Pardo JP Placenta; 1993; 14(3):321-31. PubMed ID: 8367413 [TBL] [Abstract][Full Text] [Related]
8. Stimulatory effect of ADP, ATP, NAD(P) on pyruvate production from malate by uncoupled human placental mitochondria. Swierczyński J; Aleksandrowicz Z; Zelewski L Biochem Med Metab Biol; 1987 Oct; 38(2):156-64. PubMed ID: 3675918 [TBL] [Abstract][Full Text] [Related]
9. Decreased exchange of adenine nucleotides in human placental mitochondria. Martínez F; Chávez E; Echegoyen S Int J Biochem; 1987; 19(3):275-9. PubMed ID: 3036612 [TBL] [Abstract][Full Text] [Related]
11. A re-evaluation of conditions required for an accurate estimation of the extramitochondrial ATP/ADP ratio in isolated rat-liver mitochondria. Wanders RJ; Van den Berg GB; Tager JM Biochim Biophys Acta; 1984 Oct; 767(1):113-9. PubMed ID: 6091749 [TBL] [Abstract][Full Text] [Related]
12. Correlation between the malate dependent progesterone and citrate biosynthesis in the mitochondrial fraction of human term placenta. The stimulatory effect of ADP and ATP. Swierczynski J; Klimek J; Zelewski L J Steroid Biochem; 1986 Feb; 24(2):591-5. PubMed ID: 3702442 [TBL] [Abstract][Full Text] [Related]
13. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. Bradshaw PC; Pfeiffer DR BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and hydrolysis of ADP-arsenate by beef heart submitochondrial particles. Moore SA; Moennich DM; Gresser MJ J Biol Chem; 1983 May; 258(10):6266-71. PubMed ID: 6853484 [TBL] [Abstract][Full Text] [Related]
15. The effect of osmolarity on human placental mitochondria function. Martínez F; Pardo JP; Flores-Herrera O; Espinosa-García MT Int J Biochem Cell Biol; 1995 Aug; 27(8):795-803. PubMed ID: 7584614 [TBL] [Abstract][Full Text] [Related]
16. Calcium transport in human term placental mitochondria. Flores-Herrera O; Pardo JP; Espinosa-García MT; Martínez F Biochem Mol Biol Int; 1995 Apr; 35(4):793-801. PubMed ID: 7542958 [TBL] [Abstract][Full Text] [Related]
17. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP. Martins OB; Tuena de Gómez-Puyou M; Gómez-Puyou A Biochemistry; 1988 Sep; 27(19):7552-8. PubMed ID: 2974725 [TBL] [Abstract][Full Text] [Related]
18. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. BeltrandelRio H; Wilson JE Arch Biochem Biophys; 1991 Apr; 286(1):183-94. PubMed ID: 1897945 [TBL] [Abstract][Full Text] [Related]
19. Control of mitochondrial Ca2+ retention by ADP-stimulated glutamic dehydrogenase. Chávez E; Jay D J Bioenerg Biomembr; 1987 Oct; 19(5):571-80. PubMed ID: 3693345 [TBL] [Abstract][Full Text] [Related]
20. Stimulation of intracellular calcium concentration by adenosine triphosphate and uridine 5'-triphosphate in human term placental cells: evidence for purinergic receptors. Petit A; Bélisle S J Clin Endocrinol Metab; 1995 Jun; 80(6):1809-15. PubMed ID: 7775628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]